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a b s t r a c t

In this paper the optimal control strategies of an SIR (susceptible–infected–recovered) epidemic model
with time delay are introduced. In order to do this, we consider an optimally controlled SIR epidemic
model with time delay where a control means treatment for infectious hosts. We use optimal control
approach to minimize the probability that the infected individuals spread and to maximize the total
number of susceptible and recovered individuals. We first derive the basic reproduction number and
investigate the dynamical behavior of the controlled SIR epidemic model. We also show the existence of
an optimal control for the control system and present numerical simulations on real data regarding the
course of Ebola virus in Congo. Our results indicate that a small contact rate(probability of infection) is
suitable for eradication of the disease (Ebola virus) and this is one way of optimal treatment strategies
for infectious hosts.

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Mathematical modeling of population dynamics is a fast grow-
ing research area, which has been playing important roles in
discovering the relation between species and their interaction.
The basic and important concern for mathematical models in epi-
demiology is qualitative analysis; the persistence, permanence,
asymptotic stability, and the existence and uniqueness for the
models. Many influential results related in these topics have been
established and can be found in many articles and books. An
epidemic model for the spread of infectious disease was first
introduced by Kermack and Mckendrick (1927). In their model
the populations are subdivided into three classes; the susceptible,
infected, and recovered populations. They assumed that susceptible
populations in a fixed total population become infected by contact
with infected individuals, infected individuals either die or recover
at a constant rate. The model consists of three ordinary differen-
tial equations (ODEs) which represent the rate of change in their
respective population.

Extensions of the Kermack–McKendrick model to populations
in which the individuals have mobility in an environment have also
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been studied. In the classical epidemiological model (Brauer and
Castillo-Chavez, 2001), a population of total size (N) was divided
into susceptible individuals (S), infected individuals (I), and recov-
ered individuals (R). The relation between these three categories
leads to the classical SIR model. Several epidemic models on theo-
retical developments are given in Milner and Pugliese (1999), Linda
and Amy (2000), Tuckwell and Toubiana (2007) and Zaman et al.
(2007, 2008).

In recent years, some mathematical models incorporating
delayed effects have been studied. Smith in (1994) and Smith and
Thieme in (1990) derived a scalar delayed differential equation for
the population with immature and mature age classes. The matu-
ration period was regarded as a time delay. Using the same idea, a
system of delayed differential equations for mature population in
a patchy environment has been proposed in So et al. (2001). More
recent studies consider an epidemic model with density depen-
dence to describe disease transmission in variable population size,
which can be found in (see, Cooke et al., 1999; Hethcote and van
den Driessche, 2000; Ma et al., 2003; Bachar and Dorfmayr, 2004).
Takeuchi et al. (2000) and Ma et al. (2002)studied the SIR infectious
disease model in which an infectious disease is transmitted by a
vector after an incubation time. In their models, they assumed that
the birth and the death rate are all constant so the dynamics of the
total population may be simple. In order to investigate population
dynamics for the model with more biological meanings, it should
be considered that birth and death rates are density dependent. In
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this point, an SIR epidemic model with density dependent birth and
death rates with the incubation time was formulated by Yoshida
and Hara (2007). They analyzed transmission dynamics for the epi-
demic SIR model with time delay and studied the global stability
of the SIR model. On the other hand, recently, Zaman et al. (2008)
studied the stability and optimal vaccination of a controlled SIR epi-
demic model without time delays. In this project we are interested
in combining and improving on the results in Zaman et al. (2008)
and Yoshida and Hara (2007).

In this paper, we consider a controlled SIR epidemic model with
time delay to prevent the spread of diseases by using optimal treat-
ment strategies. In order to do this, we first introduce a control
variable representing the optimal treatment for infectious hosts and
set an optimal control system for the SIR epidemic model. Then we
derive the basic reproduction number and investigate the dynam-
ical behavior of the controlled SIR epidemic model. Moreover, we
show the existence of an optimal control for this control problem
and the infection in a community dies out by using the possible
optimal control treatment. We also analyze the optimal control and
optimality system using optimal control techniques. For numerical
simulation, we fit data from Ebola a hemorrhagic fever outbreaks
Congo (1995), where we show that the basic reproduction number
is less than unity, so the infection in the community dies out by
using control treatment strategy. Furthermore, our optimal control
strategies reduce infected individuals and increase the total num-
ber of susceptible and recovered individuals. From these results,
our optimal control system can be used by epidemic researchers to
realistically simulate the stochastic dynamics of Ebola epidemics in
order to study the effect of control intervention.

The paper is organized as follows. In Section 2, a description of an
SIR epidemic model and the corresponding objective functional are
given. We derive the basic reproduction number for the control sys-
tem and show the existence. Then, we introduce the optimal control
techniques to find the optimal solution of the dynamics system. We
report our numerical results obtain from real data and analyze in
detail the dynamical behaviors of the control processes in Section
3. Finally, we describe some conclusions in Section 4.

2. Optimal Control Techniques in Delay Model

To begin the optimal control procedure, it is necessary to have
a model which describes the population dynamics. Yoshida and
Hara (2007) considered an SIR model with time delay. We use
this epidemic model to set our control problem. We may have
a population which lacks social structures and where individuals
may switch between the Susceptible, Infected, and Recovered (or
immune) states according to S → I → R. We assume that all new-
borns are susceptible and the number of the total population is
denoted by N(t) = S(t) + I(t) + R(t). Then the delayed SIR epidemic
model which is proposed in Yoshida and Hara (2007) becomes a
system of differential equations with time delay:

dS(t)
dt

=
(

b − �
rN(t)

K

)
N(t)−ˇS(t)I(t−h)

N(t−h)
−

(
d + (1−�)

rN(t)
K

)
S(t),

dI(t)
dt

=ˇS(t)I(t−h)
N(t − h)

−
(

d + (1 − �)
rN(t)

K

)
I(t) − ˛I(t),

dR(t)
dt

= ˛I(t) −
(

d + (1 − �)
rN(t)

K

)
R(t),

(1)

where b > 0, d > 0, ˛ > 0 and ˇ > 0 are the birth, death, recovery
and contact rate, respectively. r = b − d is the intrinsic growth rate,
� is the convex combination constant, K is the carrying capacity of
the population, and h is a non-negative constant which represents
a time delay on the infected individuals I and the total individu-
als N during the spread of diseases. Susceptible individuals acquire

infection at a per capita rate ˇI(t − h)/N(t − h). In this model, the
incidence rate is ˇS(t)I(t − h)/N(t − h). This incidence rate seems
more reasonable than ˇI(t)/N(t) because the force of infection is
proportional to I(t − h)/N(t − h) with time delay. Note that in some
epidemic models, bilinear incidence rate ˇS(t)I(t) and standard
incidence rate ˇS(t)I(t)/N(t) are frequently used. These incidences
imply that the contact rate or contact number is constant. Actually,
the infection probability per contact is likely influenced by the num-
ber of infected individual because more infected individuals can
increase infection risk. For instance, during SARS outbreak in 2003,
Chinese government did a lot of protection measures and control
polices: closing schools, closing restaurants, postponing confer-
ences, isolating infectious etc. These actions greatly reduced the
contact number per unit time. The dynamics of the total population
N are governed by the following logistic equation:

dN(t)
dt

=
(

b − �
rN(t)

K

)
N(t) −

(
d + (1 − �)

rN(t)
K

)
N(t). (2)

The birth rate decreases and the death rate increases to its carry-
ing capacity K for 0 < � < 1. The birth and death rate are density
independent for � = 0 and 1, respectively.

Now using the delayed SIR epidemic model (1), we will derive
an optimal control model to fit our control strategy. The theoretical
foundation of optimal control models with underlying dynamics
given by ordinary differential equations was developed by Pon-
tryagin and his co-worker in Moscow about 1950 (Kamien and
Schwartz, 2000). So by Pontryagin’s Maximum Principle, its exten-
sion and appropriate numerical methods, we will set an optimal
control problem in the time delayed SIR epidemic model to control
the spread of diseases. The main goal of this problem is to investi-
gate an effective treatment strategy to control infection diseases,
which means that we can make an SIR epidemic control model
which satisfies that the maximum numbers of infected individ-
uals are not larger than that of susceptible individuals and more
individuals are recovered after infection.

In order to set an optimal control problem, first, we make the
following notational conventions. Let �, T > 0 be given constant
and define the control set:

U = {u(t) ∈ L2(0, T) : 0 ≤ u(t) ≤ �, 0 ≤ t ≤ T}, (3)

where u(t) is Lebesgue measurable and called a control variable.
In this problem, the biological meaning of the control variable is
that low levels of the number of infected individuals build by no
contact to the susceptible individuals. In case of high contact rate
the number of infected individuals increases while the number of
susceptible and recovered individuals decreases. Better treatment
and low contact rate bring the number of infected individuals to a
small level, susceptible individuals begin to build again and more
individuals are recovered from infection. Therefore, the probability
of infected individuals I(t)/N(t) that an infected individual spread is
made by an infectious individual and this is controlled by an optimal
control treatment u(t) so that a fraction u(t)I(t)/N(t) of infected
individuals are moved from I class to R and S classes. From these
facts, our optimal control problem is given by the following.

Find a control u(t) and a triple individual (S(t), I(t), R(t)) to min-
imize the objective functional

J�(u) =
∫ T

0

[
I(t) + �u2(t)

2

]
dt (4)

subject to the state system
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