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a b s t r a c t

It is difficult to design electronic nonlinear devices capable of reproducing complex oscillations because
of the lack of general constructive rules, and because of stability problems related to the dynamical
robustness of the circuits. This is particularly true for current analog electronic circuits that imple-
ment mathematical models of bursting and spiking neurons. Here we describe a novel, four-dimensional
and dynamically robust nonlinear analog electronic circuit that is intrinsic excitable, and that dis-
plays frequency adaptation bursting and spiking oscillations. Despite differences from the classical
Hodgkin–Huxley (HH) neuron model, its bifurcation sequences and dynamical properties are preserved,
validating the circuit as a neuron model. The circuit’s performance is based on a nonlinear interaction of
fast–slow circuit blocks that can be clearly dissected, elucidating burst’s starting, sustaining and stopping
mechanisms, which may also operate in real neurons. Our analog circuit unit is easily linked and may be
useful in building networks that perform in real-time.

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Modeling of Biological Bursting Phenomena

Oscillatory electrical activity called bursting is a common fea-
ture of single excitable cells in the brain and pancreas, and is
thought to underlie some of the normal functions of these organs.
Bursting is characterized by quiescent or quasi-stationary states
interrupted by episodes of fast spiking activity. Bursting has also
been observed in models of artificial neural networks called cen-
tral patterns generators (Wang and Rinzel, 1995; Coombes and
Bressloff, 2005). It is still unknown exactly how bursting is gen-
erated, or what causes the frequency adaptation that is seen
in inter-spike intervals during a burst. There have been two
approaches to analysis of bursting behavior. One is mathemati-
cal (Izhikevich, 2000, 2007; Guckenheimer et al., 1997), the other
has been the development of analog electronic circuits (Maeda and
Makino, 2000; Wijekoon et al., 2008). The advantages of analog
circuits are real-time action and connectivity, characteristics that
allow large scale neural network building and dynamical modeling
(Rabinovich et al., 2006).

Electronic circuits that implement two-dimensional neu-
ron models, such as the integrate-and-fire model and the
FitzHugh–Nagumo model (Fitzhugh, 1961; Nagumo et al., 1962),
are unable to produce bursting behavior because the models have
only one fast timescale closed orbit that simulates the neuron’s
action potential (AP). In spite of this significant limitation, such
circuits are used frequently as building blocks in neural networks.
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More complex circuits implementing three or higher dimensional
models can provide the additional slow timescale variable (Simoni
et al., 2004; Le Masson et al., 1999; LaFlaquière et al., 1997) and
have been successful in reproducing bursting and frequency adap-
tation patterns. However, for a long time no one was able to dissect
the circuits clearly into their interacting fast and slow parts, and
thus understand the transitions between quiescent and oscillatory
states through different bifurcation scenarios. The bifurcations are
what determine the neuron-computational properties (Izhikevich,
2000). Recently, the bifurcations were geometrically (i.e., math-
ematically) classified for the Hodgkin–Huxley model (Izhikevich,
2000, 2007). And, we succeeded in reproducing different bifur-
cation scenarios using Fig. 1 analog circuit (Savino and Formigli,
2007). The Hodgkin and Huxley model (HH) is a multi-dimensional
model based on ion channel physiology (Hodgkin and Huxley,
1952).

The goal of this communication is to describe the circuit opera-
tion, such as the slow–fast current interaction, voltage-dependence
and time-dependence of the intrinsic bursting dynamics, control
of its characteristic times, and the effects of external excitations
delivered via the input channels. We also present the basic circuit
equations for future geometrical analysis and numerical simulation.

2. The Circuit and Its Dynamical Behavior

Our circuit is shown in Fig. 1. The values of the electronic compo-
nents are given in the legend. The circuit consists of three sections,
an input, modulator, and generator. The input section is merely a
way to link multiple circuits or to apply external stimuli, and is not
necessary for the generation of intrinsic burst dynamics. Details of
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Fig. 1. The bursting and spiking analog circuit. The “frequency adaptation loop” includes C3, R4, Q2 base-collector junction, C2, Q1 emitter–collector junction and R2. Transistors
Q1 (reverse-biased) and Q2 are 2N2222 type, battery E = 10 V, resistance value in K� and capacitances in �F: R1 = 3.3, R2 = 0.1, R3 = 100, R4 = 1, Rb = 50, C1 = 1, C2 = 10 C3 = 2.

an example of intrinsic bursting behavior exhibited by the circuit
is shown in Fig. 2. Bursting is seen at the V1 node, V2 node, and the
Q2 collector. The voltage at the V3 node displays bursting superim-
posed on a fluctuating baseline, resulting in a staircase-like pattern.
The entire range of bursting behavior possible with the circuit is
shown in Fig. 3 with V2 and Q2 node voltages omitted for clarity.
The different dynamics are all produced by changing the variable
resistor R3, which changes the intensity of the coupling current I(t)
between the generator and modulator. The range of bursting behav-
iors possible is also summarized in the bifurcation diagram plotted
against R3 values in Fig. 4. We emphasize here that the role of the
coupling current is remarkably non-trivial. It does not merely seg-
ment the fast periodic generator oscillation into bursts and pauses,
but produces variable inter-spike interval sequences and frequency
adaptation patterns (Fig. 5) that are similar to those of real neurons.

3. The Generator Circuit

When isolated, i.e., when I(t) = 0, the generator is a classical
threshold-negative-resistance oscillator. The negative conductance
is implemented by the reverse bias transistor Q1 collector–emitter

Fig. 2. Typical bursting waveform at nodes 1, 2, 3, and Q2 collector. Times Tr and
Td are the durations of the burst and quiescent phases respectively, and Ti is the
variable inter-spike interval during a burst. Transistor Q1 triggers a pulse or spike
each time V1 > Vth during Tr meanwhile transistor Q2 switches between reverse and
cutting after the first burst spike and remains saturate (0.3 < V3 < 0.5 V) during the
pause Td. The staggered voltage V3 remains below 0.5 V having the inflection point
IP.

Fig. 3. The range of dynamical behaviors exhibited by the circuit (from top to bot-
tom), as R3 is reduced from 400 to 20 K� and when R4 = 10 K� are shown by the
voltage V1 at node 1 and voltage V3 at node 2, range from astable, to bursting (many
to two to single spike), to spiking, to quiescent but excitable. IP indicates the V3
voltage inflection in each behavior.

characteristic curve Vec = Vec(In) with an avalanche threshold Vth of
≈9.5 V. This is a two-dimensional nonlinear dynamical system in
the phase-plane (V1, In) with the equations:

L · dIn

dt
= V1 − Vec(In)

C1 · dV1
dt

=
(

E − V1
R1

)
− In

(1)

Fig. 4. Codimension-one bifurcation diagram for resistor R3 parameter controlling,
at the same time, the coupling strength and the burst duration Tr.
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