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a b s t r a c t

We propose a neural circuit model of emotional learning using two pathways with different granular-
ity and speed of information processing. In order to derive a precise time process, we utilized a spiking
model neuron proposed by Izhikevich and spike-timing-dependent synaptic plasticity (STDP) of both exci-
tatory and inhibitory synapses. We conducted computer simulations to evaluate the proposed model. We
demonstrate some aspects of emotional learning from the perspective of the time process. The agreement
of the results with the previous behavioral experiments suggests that the structure and learning process
of the proposed model are appropriate.

© 2008 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Animals, including humans, learn on the basis of experience
and memory, with emotions, and increase their survival probabil-
ity through reactions involving emotional memory. Such learning
is called emotional learning (Uwano and Ono, 1997; LeDoux, 1996).
It was clarified that the primary region for emotional learning
is the amygdala (LeDoux, 1996). LeDoux (1996) suggested on
the basis of physiological and anatomic findings that two path-
ways, thalamo-amygdala (direct) and thalamo-cortico-amygdala
(indirect) pathways, play important roles in emotional learning.
The direct pathway can process faster than the indirect pathway,
although the information is coarser. On the other hand, the indirect
pathway processes information in more detail, but more slowly. The
direct pathway may be particularly useful in situations requiring a
rapid response; it is a rough processing system.

Armony et al. (1997) proposed a neural circuit model of emo-
tional learning using two pathways with different granularity of
information processing. However, the model cannot account for
the time process of emotional learning because the model does
not include a precise time process. Moreover, the model does not
clarify the circuit problem whereby neurons in the memory consol-
idation site for emotion do not directly contact the central nucleus
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(CE) of the amygdala that provides the principal source of emotional
outputs (Paré et al., 2004).

We propose a neural circuit model of emotional learning using
two pathways with different granularity and speed of informa-
tion processing. In order to derive a precise time process, we
utilized a spiking model neuron proposed by Izhikevich (2007) and
spike-timing-dependent synaptic plasticity (STDP) of both excita-
tory and inhibitory synapses. We conducted computer simulations
to evaluate the proposed model. We demonstrate some aspects of
emotional learning from the perspective of a time process.

The remainder of this article is organized as follows. In Section
2, we propose a neural circuit model of emotional learning using
two pathways with granularity and different speed of information
processing. Section 3 describes the results of a computer simulation
to examine the proposed model. Section 4 presents our conclusions.

2. Proposed Model

Our proposed model network is shown in Fig. 1. The proposed
model consists of sensory input, thalamus, cortex, and the amyg-
dala. The route of the conditioned stimulus (CS) includes variable
connections, whereas the route of the unconditioned stimulus (US)
is fixed. In the thalamus, the neuronal groups directly connected to
amygdala are partially received from the sensory input whereas the
neuronal groups connected to cortex are fully received. This corre-
sponds to a difference in the granularity of information processing.
In the cortex, semantic conversion means that the primary fea-
tures are converted to semantic features in the association cortex
area through an excitatory and inhibitory network. The semantic
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Fig. 1. Proposed model. Solid and dotted connections indicate fixed and variable connections, respectively. Opened and filled arrowheads indicate excitatory and inhibitory
connections, respectively.

conversion is supposed to be learned in a past. In the amygdala,
the lower side is the medial sector of the central amygdala (CEm)
that provides the principal source of emotional outputs (Paré et
al., 2004), whereas the upper part is the lateral division of the
central nucleus (CEl), including the lateral capsular division (CEc).
Wilensky et al. (2006) showed that the CE is involved not only in
the expression but also in the acquisition of emotional learning. The
CEl receives input from both the cortex and the thalamus, whereas
the CEm receives from only the thalamus. That is, the CEl is a full
memory consolidation site whereas the CEm is a partial one. Thus,
the inhibitory interneurons between the CEl and CEm are supposed
to compensate for the partial memory consolidation of the CEm.
Here, the left and right sides of the amygdala are supposed to be
opposed to each other, for instance, for fear and calmness.

In order to derive a precise time process, we utilized a spik-
ing model neuron proposed by Izhikevich (2007). The model
neuron was reduced from a number of biophysically accurate
Hodgkin–Huxley-type neuronal models to a two-dimensional sys-
tem ordinary differential of the form:

v̇ = 0.04v2 + 5v+ 140− u+ Iext(t) (1)

u̇ = a(bv− u) (2)

with the auxiliary after-spike resting

if v ≤ 30 mV, then

{
v← c
u← u+ d.

(3)

The external current Iext(t) is expressed as
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Here, v represents the membrane potential of the model neuron, u
represents a membrane recovery variable, a, b, c, and d are dimen-
sionless parameters, t is time, gsyni(t) is the time-varying synaptic
conductance for the ith spike, Vrest is the reversal potential, wi is the
weight ratio, Ai is the maximum amplitude, tf

i
is the arrival time,

and �i is the time constant. The parameter set for regular spiking
(RS), a = 0.02, b = 0.2, c = −65, and d = 8.0, is used for excitatory
neurons, whereas the parameter set for fast spiking (FS), a = 0.10,
b = 0.2, c = −65, and d = 2.0, is used for inhibitory neurons.

The solid connections shown in Fig. 1 are fixed, whereas the dot-
ted connections are variable, that is, they are learned by STDP, which
is a minute time resolution version of the well-known Hebb learn-
ing rule. The STDP profile of excitatory synapses has been observed
electrophysiologically (Markram et al., 1997; Bi and Poo, 1998;
Froemke and Dan, 2002). From the profile, postsynaptic potentials
arriving after presynaptic potentials induce long-term potentiation,
and postsynaptic potentials arriving before presynaptic potentials
induce long-term depression. Froemke and Dan (2002) derived a
numerical description of the increase and decrease rates of synaptic
plasticity w(�t) from electrophysiological data as follows:
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(6)

where �t (ms) is the temporal difference from a postsynaptic spike
to a presynaptic spike and n is the number for which the maximum
rate is obtained.
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