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A real-time spiking cerebellum model for learning robot control
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a b s t r a c t

We describe a neural network model of the cerebellum based on integrate-and-fire spiking neurons with
conductance-based synapses. The neuron characteristics are derived from our earlier detailed models
of the different cerebellar neurons. We tested the cerebellum model in a real-time control application
with a robotic platform. Delays were introduced in the different sensorimotor pathways according to the
biological system. The main plasticity in the cerebellar model is a spike-timing dependent plasticity (STDP)
at the parallel fiber to Purkinje cell connections. This STDP is driven by the inferior olive (IO) activity, which
encodes an error signal using a novel probabilistic low frequency model. We demonstrate the cerebellar
model in a robot control system using a target-reaching task. We test whether the system learns to reach
different target positions in a non-destructive way, therefore abstracting a general dynamics model. To
test the system’s ability to self-adapt to different dynamical situations, we present results obtained after
changing the dynamics of the robotic platform significantly (its friction and load). The experimental results
show that the cerebellar-based system is able to adapt dynamically to different contexts.

© 2008 Published by Elsevier Ireland Ltd.

1. Introduction

Although the cerebellum architecture has been studied for more
than 100 years (Ramón y Cajal, 1995; Golgi, 1967), its functional role
is still an open topic. The cerebellum plays a major role in coordi-
nated and accurate movements (Bastian et al., 2000; Ito, 2001). It is
thought to be an essential computing tissue for our daily manipu-
lation tasks. Its regular topology has inspired many artificial neural
network models in the past decades (Kettner et al., 1997; Medina
and Mauk, 1999; Schweighofer et al., 1998a, b; Spoelstra et al., 2000;
Arbib et al., 1995; Eskiizmirliler et al., 2002). Furthermore, there
are many research groups modelling in detail its cells (D’Angelo et
al., 2001; Bezzi et al., 2004; Steuber et al., 2004) in order to eluci-
date the specific computations that take place at each part of the
cerebellum architecture.

There have been great advances in robotics, mainly in indus-
trial applications. Yet most of the industrial robots use stiff joints
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and high-gain closed-loop control. The movement of stiff joints
facilitates control since it reduces (or even avoids) the necessity
of dynamics models. Industrial robots are able to perform accurate
trajectory-following adopting online closed-loop error-correction
schemes. This strategy became possible due to the outstanding pro-
cessing speed of current circuits that calculate errors and deliver
feedback correction signals on a microsecond time scale. Never-
theless, stiff-joint control does not take advantage of the robot
dynamics, which results in unnatural control, wasted energy and
reduced robot autonomy.

In contrast, biological limbs have joints of variable stiffness
and use low-gain control schemes where the dynamics cannot be
ignored. Indeed, the dynamics, for instance, of an arm–hand system,
is likely to be significantly modified when manipulating objects of
different weights. Moreover, biological systems have delays in sen-
sorimotor pathways up to several hundreds of milliseconds. This
makes it impossible to apply on-line closed-loop error-correction
strategies without having predictor modules able to abstract the
kinematics and dynamics models of the platform.

There are plenty of challenges in robotics such as the develop-
ment of accurate low-gain control schemes for robotic platforms of
several degrees of freedom (DOF) and compliant joints (non-stiff).
Compliant joints and low-gain control are of particular interest
for robots interacting with humans. For security reasons, a robot
becomes a safer platform if it is not able to apply dangerous forces
and can absorb energy.
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In this paper, we emulated the learning strategy followed by
biological systems to control low-gain compliant robotic platforms
in the presence of sensorimotor pathways with delays of hun-
dreds of millisecond. To do this, we studied how a cerebellum
model can abstract dynamics models of the robotic platform to
facilitate control by predicting and correcting errors in the motor
space.

2. Cerebellum Model

Previous modelling of the cerebellum contribution in movement
learning includes the modeling of smooth pursuit eye movements

(Kettner et al., 1997). In this work, the cerebellar nuclei cells were
not implemented in their model, and analog units, not spiking
neurons were used. Schweighofer et al. (1998a) proposed a cerebel-
lum model learning the inverse dynamics of a two-link six-muscle
arm system. The parallel fiber-Purkinje cell (PF-PC) long-term
depression (LTD) was biologically inspired, but not the long-term
potentiation (LTP), which was implemented as a weights normal-
ization process. Moreover, learning was performed over short trials
only (less than 500 ms) and not continuously as in our contribution.

A few cerebellar models for eyelid conditioning have used spik-
ing neurons (e.g. Medina and Mauk, 1999; Hofstötter et al., 2002).
Learning was based on spikes coincidences between neurons, but

Fig. 1. Cerebellum model diagram. Inputs about the movement (desired arm state and target information) were sent (upward arrow) to the two layers of mossy fibers (MF):
distance to the target and its absolute position in the experimental field (dtarg(t) and �targ) as well as desired positions (�) and speeds (�̇) of the shoulder (s) and elbow (e)
joints along the trajectory. These desired states were obtained from a crude inverse kinematic model (see Fig. 9), representing motor cortex and other motor areas. The mossy
fibers projected to two layers of granule cells (GR, 1000 neurons per layer) and to 16 deep cerebellar nuclei (DCN) cells. The 32 Purkinje cells (PC), 16 DCN cells and 32 inferior
olive (IO) neurons were divided along 4 functional zones (inspired from cerebellar microzone organisation), one for each of the actuators, agonist or antagonist, of the elbow
and shoulder joints. The PC received excitatory inputs from all the desired joint state-related GR (ascending axons that maintain the cells in a state of excitability) and from
all parallel fibers PF with a connection probability of pPC-PF= 0.8. They also received an afferent from the IO in a one-to-one scheme. In turn, the DCN cells received inhibitory
connections from two PCs of the same microzone. The teaching signal was processed by the IO cells (downward arrow, top) (see Fig. 9). At the output of the cerebellum
(downward arrow, bottom), the DCN firing rates were interpreted as predictive positive (+) and negative (−) torque corrections (�) for the shoulder (s) and elbow (e) joints.
The numbers in brackets indicate the number of cells per layer and per zone.
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