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a b s t r a c t

We consider an oscillatory network model that is obtained as complex-valued generalization of the clas-
sical Cohen–Grossberg–Hopfield (CGH) model. Apart from a synchronizing mechanism, a stronger and/or
more coherent input to a unit in the network implies a higher phase velocity of this unit. This constitutes
the desynchronizing mechanism, referred to as acceleration. The units’ activity of the classical model
translates into the amplitudes of the phase model oscillators. This allows to associate classical and tem-
poral coding with amplitude and phase dynamics, respectively. We discuss how the two dynamics act
together to achieve the unambiguous pattern recognition that avoids the superposition problem. With
respect to coherence, dominating patterns may take coherent states also if only a subset of its units is
on-state. The competition for coherence, introduced by acceleration, realizes a kind of feature counting
that identifies the dominating pattern as the pattern with the most on-state units. This dominating but
possibly only partially active pattern may take a coherent state with a frequency level that is related to the
number of on-state units. We also speculate on neurophysiological findings, related to observed phase
differences between optimally and suboptimally activated neurons, that may indicate the presence of
acceleration.

© 2008 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Specifying states of neural networks by assigning on- and off-
states to its units, thereby describing their state of activity, is an
approach that goes back at least to the earliest work of McCulloch
and Pitts (1943). In 1949, based on this picture of on- and off-state
neurons, Donald Hebb proposed that mental objects are repre-
sented as sets of on-state units, referred to as assemblies (Hebb,
1949). In the 1960s, instead of using only the binary on- and
off-values for neural units, the sigmoid firing characteristic was
introduced, given by

Vk = g(uk) = 1
2

(1 + tanh(uk)), (1)

where Vk describes the firing rate of the unit k of a network with N
units, k = 1, . . . , N, and uk describes the input to this unit (Cowan,
1967). On- and off-state units are then characterized through, cor-
respondingly, Vk � 1 and Vk � 0. This continuous generalization
allowed for smooth transitions between these states, making the
continuous dynamical system models possible that generated a
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number of new approaches. For example, this continuous version is
used with the Cohen–Grossberg–Hopfield (CGH) model that iden-
tifies assemblies with patterns that are stored according to the rules
of Hebbian memory (Cohen and Grossberg, 1983; Hopfield, 1984).
In the following, we refer to the paradigm that identifies assemblies
with sets of on-state neural units as classical coding. Today, there
are doubts whether classical coding may describe the complete
picture. Already in 1961, Rosenblatt observed that classical coding
has to deal with a severe problem when applied to the simultane-
ous formation of several assemblies. This problem is the so-called
superposition catastrophe (Rosenblatt, 1961). In the 1980s, it moti-
vated von der Malsburg (1981) to propose the temporal correlation
hypothesis. This is based on using also some temporal structure of
the units’ activity. According to the temporal correlation hypothe-
sis, a set of on-state neural units constitutes an assembly only if the
units are grouped together based on temporal correlation of these
activities. Different assemblies may then be simultaneously active
but still be separable with regard to different temporal correlations.
For reviews of the superposition problem and temporal coding, as
well experimental confirmations in the context of brain dynamics,
see von der Malsburg (1999) and Singer (2003).

The modeling of temporal coding is still an open problem. It
may be expected that some oscillatory network model is appro-
priate (see Section 2.4 and Burwick (2006) for a list of references
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to models based on oscillatory networks). Using such an approach,
the formation of assemblies based on temporal correlation requires
synchronizing as well as desynchronizing mechanisms. Without a
desynchronizing mechanism, global synchronization would rein-
troduce the superposition catastrophe. The model that we use in
this paper is based on a desynchronizing mechanism that is referred
to as acceleration. It implies that the phase velocities of neural
units are increased in case that the input from the other units is
stronger and/or more coherent. Recently, it was demonstrated that
such a desynchronizing mechanism has a profound and favorable
effect on segmenting overlapping patterns (Burwick, 2007, 2008a,
b). Thereby, it provides a new perspective on solving a central prob-
lem of classical neural networks.

The model that we use may be formulated as complex-valued
generalization of the classical (real-valued) CGH model that was
mentioned above. Thus, it is an oscillatory network model that is
particularly close to the classical case. In consequence, it allows
to integrate and compare the roles of classical and temporal cod-
ing. The classical activation, representing on- and off-states of the
neural units, translates into large and small amplitude oscillations,
respectively. Classical coding is therefore related to the amplitude
dynamics, while the phase dynamics is related to temporal cod-
ing.

In this paper, our focus is on the role that on- and off-states
may have in the context of temporal coding. Moreover, we specu-
late on neurophysiological findings that could indicate the presence
of acceleration. We go beyond the discussions in Burwick (2007,
2008a, b, in press) in three respects. First, we demonstrate with an
example the attracting character of the on- and off-states and the
presence of the corresponding boundary between the two basins of
attraction (compare Fig. 4, panels A and C). Second, we extend the
pattern-frequency correspondence that was introduced in Burwick
(2008a). The described complementarity of classical and tempo-
ral coding motivates that we introduce different frequency levels
for each of these patterns, related to different numbers of on-
state units. The presence of such frequency levels is demonstrated
with an example (see Eq. (20) and Fig. 7). Third, we speculate
that (analogs of) the neurophysiologically observed recoding of
excitatory drive into phase shifts (see references in Section 5.1)
may be related to the presence of acceleration couplings. Thereby,
we discuss a proposal that was given at the end of Burwick (in
press).

In Section 2, we review the model. In Section 3, the pattern-
frequency correspondence that was introduced in Burwick (2008a)
is extended to different frequency levels for each pattern. Each
of these levels is specified by the number of on-state units, as
mentioned above. Section 4 gives two examples. The first example
demonstrates the pattern segmenting interplay of synchronization
and acceleration. The second example uses the same network archi-
tecture but different initial values. Then, in contrast to the first
example, only part of the network becomes active. This allows
to demonstrate the interplay of amplitude and phase dynamics,
reflecting the complementary roles of classical and temporal cod-
ing. Moreover, it illustrates the relevance of the number of on-state
units for the pattern frequency level. The comments on possible
neurophysiological findings may be found in Section 5. Section 6
contains the summary.

2. The Model: Oscillatory Networks with Synchronization
and Acceleration

2.1. Real Coordinates

Consider a network with N units, where each unit k is described
in terms of amplitude Vk and phase �k, k = 1, . . . , N. Using the

activation function g that was described with Eq. (1), the oscil-
latory system that we study is a generalization of the classical
Cohen–Grossberg–Hopfield (CGH) model:

�̃(uk)
duk

dt
= Ik − uk + 1

N

N∑
l=1

wkl(�l − �k)Vl (2a)

d�k

dt
= ωk

(
u, �

)
+ 1

N

N∑
l=1

skl(�l − �k)Vl

︸ ︷︷ ︸
synchronization terms

(2b)

with

ωk = ω1,k + ω2,kVk + 1
N

N∑
l=1

�ωkl(�l − �k)Vl

︸ ︷︷ ︸
acceleration terms

(3)

Here, t is the time, Ik is an external input, the ω1,k are the eigen-
frequencies of the oscillators, and the ω2,k parameterize the shear
terms. A comparison of Eq. (2) with the CGH model (Cohen and
Grossberg, 1983; Hopfield, 1984) shows that the amplitude is the
analog of the classical activity.

In Burwick (2007), Eq. (2) is described as complex-valued gra-
dient system. This form implies the phase-dependent couplings

wkl(�) = hkl

(
a + �

2
cos

(
�
)

− �ω3

2
sin

(
�
))

, (4)

skl(�) = hkl � sin
(

�
)

, (5)

�ωkl(�) = hkl ω3 cos
(

�
)

, (6)

where a > 0, � > 0, ω3 > 0 are real parameters, and the scaling
factor,

�̃(uk) = (1 − Vk)�, (7)

uses a time-scale � > 0. Notice, �̃(uk) > 0 due to Eq. (1). The hkl

describe Hebbian couplings (see Section 2.3). The more general sys-
tem with all-order mode couplings was given in Burwick (2007).
In this paper, we only discuss the simple form with first-mode
couplings as given in Eqs. (2)–(7).

2.2. Complex-valued Gradient System

As mentioned above, Eq. (2) was derived from a complex-valued
gradient system,

�
dzk

dt
= −

∣∣zk

∣∣ ∂L
∂z̄k

, (8)

where L is a complex-valued potential function and the complex
coordinates are given by

zk = Vk exp(i�k), z̄k = Vk exp(−i�k). (9)

Due to Eq. (1), the dynamics is restricted to the punctured unit disk,

0 < |zk| = Vk = g(uk) < 1. (10)

In the following, we will frequently refer to the complex coordi-
nates formulation, in particular by describing the dynamics on the
(punctured) complex unit disk, given by Eq. (10). The explicit form
of L may be found in Burwick (2007).

2.3. Hebbian Memory

According to Hebbian memory, the storage of P patterns �p
k

(related to the assemblies that were mentioned in Section 1),
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