BioSystems 94 (2008) 95-101

journal homepage: www.elsevier.com/locate/biosystems

Contents lists available at ScienceDirect

BioSystems

A cell pattern generation model based on an extended artificial

regulatory network

Arturo Chavoya?®<*, Yves Duthen®:¢

2 Universidad de Guadalajara, Periférico Norte 799, Zapopan, Jal., CP 45000, Mexico
b Université de Toulouse 1, 1 Place Anatole France, 31000 Toulouse, France

¢ Institut de Recherche en Informatique de Toulouse (IRIT), VORTEX Team, 118 Route de Narbonne, 31062 Toulouse, France

ARTICLE INFO ABSTRACT

Article history:

Received 7 May 2007

Received in revised form 30 October 2007
Accepted 23 May 2008

Keywords:

Cell pattern

Artificial regulatory network
Genetic algorithms

French flag problem

Cellular automata

Cell pattern generation has a fundamental role in both artificial and natural development. This paper
presents results from a model in which a genetic algorithm (GA) was used to evolve an artificial regula-
tory network (ARN) to produce predefined 2D cell patterns through the selective activation and inhibition
of genes. The ARN used in this work is an extension of a model previously used to create simple geo-
metrical patterns. The GA worked by evolving the gene regulatory network that was used to control cell
reproduction, which took place in a testbed based on cellular automata (CA). After the final chromosomes
were produced, a single cell in the middle of the CA lattice was allowed to replicate controlled by the
ARN found by the GA, until the desired cell pattern was formed. The model was applied to the problem
of generating a French flag pattern.

© 2008 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Computational Development is a relatively new sub-field of
Evolutionary Computation that studies artificial models of cel-
lular growth, with the objective of understanding how complex
structures and patterns can emerge from a small group of initial
undifferentiated cells (Kumar and Bentley, 2003). In biological sys-
tems, development is a fascinating and very complex process that
involves following an extremely intricate program coded in the
organism'’s genome.

One of the crucial stages in the development of an organism
is that of pattern formation, where the fundamental body plans of
the individual are delineated. It is now evident that gene regulatory
networks play a central role in the development and metabolism of
living organisms (Davidson, 2006). Furthermore, it has been found
in recent years that the different cell patterns created during the
development of an organism are mainly due to the selective acti-
vation and inhibition of very specific regulatory genes.

Artificial regulatory networks (ARNs) are computer models
whose objective is to mimic to some extent the gene regulatory
networks found in nature. ARNs have previously been used to study

* Corresponding author at: Universidad de Guadalajara, Periférico Norte 799,
Zapopan, Jal., Mexico CP 45000, Mexico.
E-mail addresses: achavoya@cucea.udg.mx (A. Chavoya),
yves.duthen@univ-tlsel.fr (Y. Duthen).

0303-2647/$ - see front matter © 2008 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.biosystems.2008.05.015

differential gene expression either as a computational paradigm
or to solve particular problems (Eggenberger, 1997; Reil, 1999;
Banzhaf, 2003; Kuo and Banzhaf, 2004; Stewart et al., 2005; Flann
et al,, 2005). On the other hand, evolutionary computation tech-
niques have been extensively used in the past in a wide range of
applications, and in particular they have previously been used to
evolve ARNs to perform specific tasks (Bongard, 2002; Kuo et al,,
2004).

In this paper we describe results on the use of a genetic algo-
rithm (GA) to evolve an ARN in order to create predefined 2D
patterns by means of the selective activation and inhibition of
genes. The ARN used in this work is an extension of the model devel-
oped by Banzhaf(2003). We decided to extend the model because in
previous work we ran into limits in the number of regulatory genes
that could be reliably synchronized under the conditions essayed
(Chavoya and Duthen, 2007). In order to test the functionality of
the ARN found by the GA, we applied the chromosomes represent-
ing the ARN to a cellular growth model that we have successfully
used in the past to develop simple 2D and 3D geometrical shapes
(Chavoya and Duthen, 2006Db).

The paper starts with a section describing the French flag prob-
lem with a brief description of models that have used it as a test
case. The next section describes the cellular growth testbed devel-
oped to evaluate the evolved ARNs, followed by a section presenting
the ARN model and how it was implemented. The following section
describes the GA used and how it was applied to evolve the ARN.
Results are presented next, followed by a section of conclusions.


http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:achavoya@cucea.udg.mx
mailto:yves.duthen@univ-tlse1.fr
dx.doi.org/10.1016/j.biosystems.2008.05.015

96 A. Chavoya, Y. Duthen / BioSystems 94 (2008) 95-101

2. The French Flag Problem

The problem of generating a French flag pattern was first intro-
duced by Wolpert in the late 1960s when trying to formulate the
problem of cell pattern development and regulation in living organ-
isms (Wolpert, 1968). This formulation has been used since then
by some authors to study the problem of artificial pattern develop-
ment.

Lindenmayer and Rozenberg (1972) used the French flag prob-
lem to illustrate how a grammar-based L-System could be used to
solve the generation of this particular pattern when enunciated
as the production of a string of the type a"b"c" over the alpha-
bet {a, b, c} and with n > 0. On the other hand, Herman and Liu
(1973) developed an extension of a simulator called CELIA (Baker
and Herman, 1970) and applied it to generate a French flag pat-
tern in order to study synchronization and symmetry breaking in
cellular development.

More recently, Miller and Banzhaf (2003) used what they called
Cartesian genetic programming to evolve a cell program that would
construct a French flag pattern. They tested the robustness of their
programs by manually removing parts of the developing pattern.
They found that some of their evolved programs could repair to
some extent the damaged patterns. Bowers (2005) also used this
problem to study the phenotypic robustness of his embryogeny
model, which was based on cellular growth with diffusing chemi-
cals as signaling molecules.

Gordon and Bentley (2005) proposed a development model
based on a set of rules that described how development should pro-
ceed. A set of rules evolved by a GA was used to develop a French
flag pattern. The morphogenic model based on a multiagent sys-
tem developed by Beurier et al. (2006) also used an evolved set of
agent rules to grow French and Japanese flag patterns. On the other
hand, Devert et al. (2007) proposed a neural network model for
multicellular development that grew French flag patterns.

Finally, even models for developing evolvable hardware have
benefited from the French flag problem as a test case (Tyrrell and
Greensted, 2007; Harding et al., 2007).

3. Cellular Growth Testbed

Cellular automata (CA) were chosen as models of cellular
growth, since they provide a simple mathematical model that
can be used to study self-organizing features of complex systems
(Wolfram, 1983). CA are characterized by a regular lattice of Niden-
tical cells, an interaction neighborhood template 1, a finite set of
cell states ¥, and a space- and time-independent transition rule ¢
which is applied to every cell in the lattice at each time step.

In the cellular growth testbed used in this work, a 33 x 33 reg-
ular lattice with non-periodic boundaries was used. The set of cell
states was defined as ¥ = {0, 1}, where 0 can be interpreted as an
empty cell and 1 as an occupied or active cell. The interaction tem-
plate n used was an outer Moore neighborhood. The CA rule ¢ was
defined as a lookup table that determined, for each local neighbor-
hood, the state (empty or occupied) of the objective cell at the next
time step. For a binary-state CA, these update states are termed
the rule table’s “output bits”. The lookup table input was defined
by the binary state value of cells in the local interaction neighbor-
hood, where 0 meant an empty cell and 1 meant an occupied cell
(Chavoya and Duthen, 2006a). A cell can become active only if there
isalready an active cell in the interaction neighborhood. Thus, a new
active cell can only be derived (reproduced) from a previously acti-
vated cell in the interaction neighborhood. Starting with an active
cell in the middle of the lattice, the CA algorithm is applied allow-
ing active cells to reproduce for 100 time steps according to the

CA rule table. During an iteration of the CA algorithm, the order of
reproduction of active cells is randomly selected in order to avoid
artifacts caused by a deterministic order of cell reproduction. For
the sake of simplicity, cell death is not considered in the present
model.

For all experiments, the CA were implemented as NetLogo mod-
els. NetLogo is a programmable modeling environment based on
StarLogo that can be used to simulate natural and social phenom-
ena (Wilensky, 1999). It works by giving instructions to hundreds
or thousands of independent “agents” all operating concurrently.
It is well suited to study emergent properties in complex systems
that result from the interaction of simple but often numerous enti-
ties. For each of the cell patterns studied, a NetLogo model was
built.

4. Artificial Regulatory Network

An artificial regulatory network is a gene control model inspired
by its biological counterpart. In nature, gene regulatory networks
are widely used to control development and metabolic functions in
living organisms (Davidson, 2006). Biological gene regulatory net-
works are a central component of an organism’s genome, which is
coded as one or more chains of DNA, and that interact with other
macromolecules, such as RNA and proteins. On the other hand, arti-
ficial genomes are usually coded as strings of discrete data types.
The genome used in this work was implemented as a binary string
starting with a series of regulatory genes that make up an ARN,
followed by a number of structural genes (see Fig. 1).

The gene regulatory network implemented in this work is an
extension of the ARN presented in Chavoya and Duthen (2007),
which in turn is based on the model proposed by Banzhaf
(2003). However, unlike the ARN developed by this author, the
genome implemented in the present work does not have promoter
sequences and there are no unused intergene regions. All regulatory
genes are adjacent and have predefined initial and end positions.
Furthermore, the number of regulatory genes is fixed.

The original model only considered one inhibitor and one
enhancer site for each regulatory gene (Banzhaf, 2003). However,
in the present model the number of regulatory sites can be more
than two and, more significantly, they have no predefined function.
They can behave either as an enhancer or an inhibitor, depending
on the configuration of the function defining bits associated with
the regulatory site (Fig. 1). If there are more 1's than 0’s in the func-
tion defining region, then the site functions as an enhancer, but if
there are more 0’s than 1’s, then the site behaves as an inhibitor.
Finally, if there is an equal number of 1’s and 0’s, then the regula-
tory site is turned off. This means that the regulatory site role as an
enhancer or as an inhibitor can be evolved by the GA. Furthermore,
if the number of function defining bits is even, then the regula-
tory site can be turned on and off. The number of regulatory sites
was extended with respect to the original model in order to more
closely follow what happens in nature, where biological regulatory
genes involved in development typically have several regulatory
sites associated with them (Davidson, 2006).

As mentioned above, the ARN used in the present work consists
of a series of regulatory genes, each of which consists in turn of a
series of inhibitor/enhancer sites and a series of regulatory protein
coding regions (Fig. 1). The latter “translate” a protein using the
majority rule, i.e. for each bit position in the protein coding regions,
the number of 1’s and 0’s is counted and the bit that is in majority
is translated into the regulatory protein.

The regulatory sites and the individual protein coding regions
all have the same size in bits. Thus the protein translated from the
coding regions can be compared on a bit by bit basis with the reg-



Download English Version:

https://daneshyari.com/en/article/2076645

Download Persian Version:

https://daneshyari.com/article/2076645

Daneshyari.com


https://daneshyari.com/en/article/2076645
https://daneshyari.com/article/2076645
https://daneshyari.com/

