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Application of dynamic point process models to cardiovascular control
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Abstract

The development of statistical models that accurately describe the stochastic structure of biological signals is a fast growing area in quantitative
research. In developing a novel statistical paradigm based on Bayes’ theorem applied to point processes, we are focusing our recent research on
characterizing the physiological mechanisms involved in cardiovascular control. Results from a tilt table study point at our statistical framework
as a valid model for the heart beat, as generated from complex mechanisms underlying cardiovascular control. The point process analysis provides
new quantitative indices that could have important implications for research studies of cardiovascular and autonomic regulation and for monitoring

of heart rate and heart rate variability measures in clinical settings.
© 2008 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Heart rate (HR) and heart rate variability (HRV) are impor-
tant dynamic measures of the state of the cardiovascular system
and the autonomic nervous system (Stauss, 2003; Task Force,
1996). Heart rate is traditionally estimated as the average of the
reciprocal of the R—R intervals within a specified time window,
or as the number of R-wave events (heart beats) per unit time on
the electrocardiogram (ECG). The R-wave events mark the elec-
trical impulses from the heart’s conduction system that represent
ventricular contractions. Hence, they are a sequence of discrete
occurrences in continuous time, and as such, form a point pro-
cess. Rather than modeling them to reflect the point process
structure of the heart beats, most current methods either treat
the heart beat R—R interval series as continuous-valued signals,
or convert them into continuous-valued, evenly spaced measure-
ments for analysis by interpolation of either the R—R intervals
or their reciprocals. We have recently derived new definitions
of HR and HRYV based on an explicit point process Bayesian
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probability model for heart rate under the assumption that the
stochastic properties of the R—R intervals are governed by an
inverse Gaussian renewal model. We can estimate the time-
varying inverse Gaussian parameters by either local maximum
likelihood (Barbieri et al., 2005) or by adaptive point pro-
cess estimation (Barbieri and Brown, 2006), and assess model
goodness-of-fit by Kolmogorov—Smirnov (KS) tests based on
the time-rescaling theorem. These models give a more phys-
iologically sound representation of the stochastic structure in
heart beat generation than those provided by current definitions
and analysis methods. In particular, the adaptive filter algorithm
can compute updates in an on-line fashion and at any desired
temporal resolution, and it may be at the core of a new device
to monitor heart beat dynamics in clinical settings such as the
intensive care unit, the operating room and during labor and
delivery (Fig. 1). We here show the application of our adap-
tive paradigm to data from 10 healthy subjects during postural
changes.

2. Methods

In this section, we present the heart beat interval and the heart rate probabil-
ity models, the heart beat interval model parameters, the point process adaptive
filtering algorithm to derive instantaneous estimates of heart rate and heart
rate variability, and the goodness-of-fit test to evaluate how well these esti-
mates describe the stochastic structure of the R-wave events extracted from an
ECG.
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Fig. 1. From ECG non-invasive recordings, R—R interval peak can be detected, and the adaptive filter algorithm can compute instantaneous updates of heart rate and
heart rate variability indices in an on-line fashion and at any desired temporal resolution. This framework poses the basis for a new device for monitoring of heart
beat dynamics in clinical settings such as the intensive care unit, the operating room and during labor and delivery.

2.1. Point Process Probability Model of Heart Beat Intervals

Each R-wave event is initiated by a coordinated depolarization of the heart’s
pacemaker cells that begins in the sino-atrial (SA) node and propagates through-
out the cardiac muscle. Deterministic models of this integrate (rise of the
transmembrane potential)-and-fire (depolarization) mechanism are used regu-
larly to simulate heart beats or R-wave events (De Boer et al., 1985; Berger et al.,
1986). An elementary, stochastic integrate-and-fire model is the Gaussian ran-
dom walk model with drift, and the probability density of the first passage times
for this random walk process, i.e., the times between threshold crossings (R—R
intervals), is well-known to be the inverse Gaussian (Tuckwell, 1988; Chhikara
and Folks, 1989). Therefore, we assume that given any R-wave event u, the
waiting time until the next R-wave event, or equivalently, the length of the next
R-R interval, obeys the following history-dependent inverse Gaussian (HDIG)
probability density:
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where O<uj;<up<---<up<---<ug <T are the K successive R-wave event
times from an ECG in an observation interval (0, 7], ¢ is any time satisfying ¢ > uy,
Hi = {ug, wg, Wg—1, ..., Wg—p+1} is the history of the R—R intervals up to uy,
Wi = ug — ug_ is the kth R—R interval, w(Hy, 6) = 6o + Z’,;lejwk,,«H >0
is the mean, 6,11 >0 is the scale parameter, and 6 = (6, 01, . . .,'9p+1 ) is the vector
of model parameters. The autoregression on the mean allows for consideration
of the effect of the recent history of the sympathetic and parasympathetic inputs
to the SA node.

The mean and standard deviation of the R—R probability model in (1) are
respectively
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Heart rate is often defined as the reciprocal of the R—R intervals, thus we
define r=c(r—u;)~" as the heart rate random variable and use the standard
change-of-variables formula from elementary probability theory to derive the
mean and standard deviation of the heart rate probability density defined as
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To track the non-stationary behavior in heart beat dynamics that occurs due
to changes in state under both physiological and pathological conditions, we
assume that the parameter 6 is time-varying, and we model the time-varying
behavior of 6 using a state space model. To define the state model and the
observation model, we choose J large, and divide (0, 7] into J intervals of equal
width A=T7/J, so that there is at most one spike per interval. The adaptive
parameter estimates will be updated at jA forj=1,...,J.

From the heart beat probability model in (1) we define the associated con-
ditional intensity function as

fGAIH;, 0j4)
L= [ fl;. 0, du

A(jAIH}, 0j4) = 6

The conditional intensity function provides a canonical characterization of a
point process that gives a history-dependent generalization of the rate function
of a Poisson process (Brown et al., 2003).

Once the state model and the observation process model are defined (Barbieri
and Brown, 20006), it follows from (Barbieri et al., 2004; Eden et al., 2004) that
the point process adaptive filter algorithm for this system is
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Posterior mode : 0j1j = 0j1j—1 + Wjjj—-1(VlogAjn; — 1;A], ©
Posterior variance : W = [Wj_‘},l — (V?log Aplnj —x;A]

—(Vog A )[VA,;AIT", (10)

where A; =A(jA|H}, 0j;—1) and v(v2) denotes the first (second) derivative of the
indicated function with respect to 6 for j=1,. .., J. The notation 6;x defines the
state at time jA, given the observations from (0, kA].

Given 6, the point process adaptive filter estimate of 6 at time jA, it fol-
lows from (2)—(5) that the instantaneous estimates of mean R—R, R—R interval
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