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Abstract

In search for small universal computing devices of various types, we consider here the case of spiking neural P systems (SN P
systems), in two variants: as devices that compute functions and as devices that generate sets of numbers. We start with the first
case and we produce a universal spiking neural P system with 84 neurons. If a slight generalization of the used rules is adopted,
namely, we allow rules for producing simultaneously several spikes, then a considerable reduction, to 49 neurons, is obtained. For
SN P systems used as generators of sets of numbers, we find a universal system with restricted rules having 76 neurons and one
with extended rules having 50 neurons.
© 2006 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Looking for small universal computing devices is a
natural and well investigated topic in computer science,
see e.g. Korec (1996) and Rogozhin (1996), and the ref-
erences therein. Recently, this issue started to be consid-
ered also in membrane computing; first contributions of
this kind can be found in Rogozhin and Verlan (2006)
(for tissue P systems with string objects processed by
splicing operations) and Csuhaj-Varjú et al. (in press)
(for symport/antiport P systems).

In the present paper, we address the case of the re-
cently introduced (see Ionescu et al., 2006; Ibarra et al.,
in press; Păun et al., 2006) spiking neural P systems (in
short, SN P systems), computing models which bring
into membrane computing (see Păun, 2002 for an in-
troduction and http://www.psystems.disco.unimib.it for
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updated information) ingredients from neural comput-
ing by spiking (see e.g. Maass, 2002; Maass and Bishop,
1999).

In short, an SN P system consists of a set of neu-
rons placed in the nodes of a directed graph (whose arcs
represent synapses) and sending to each other spikes,
identical electrical impulses. The distance between con-
secutive spikes is the main way to encode information.
The neurons contain rules for emitting spikes and for for-
getting spikes. One neuron is distinguished as the output
neuron and its spikes also exit into the environment, thus
producing a spike train.

Such systems can be used as computing devices in
various ways; generating sets of numbers (encoded in
the number of steps between consecutive spikes sent
into the environment by the output neuron), generating
strings (the spike train itself is such a string over the
binary alphabet), or computing functions (an input neu-
ron “reads” the arguments of the function from the en-
vironment and the output neuron “writes” the function
value, in all cases with the numbers being encoded in
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the distance between consecutive spikes). More precise
definitions will be given in Section 2.2.

Here we deal with the first and the third cases, namely
with SN P systems that generate numbers and compute
functions.

Already in Ionescu et al. (2006), the SN P systems
used for computing sets of numbers were proved to be
computationally complete (able to compute all Turing
computable sets of numbers), but no bound on the num-
ber of used neurons was found. The proof from Ionescu
et al. (2006) is based on simulating register machines
with SN P systems, hence the same strategy as that fol-
lowed in Csuhaj-Varjú et al. (in press) in search of small
universal P systems is useful also here: starting from a
small universal register machine as those constructed in
Korec (1996), we can get a small universal SN P system,
with the important mentioning that in Korec (1996) one
works with register machines that compute functions.
That is why we also start here with this case.

We work with the so-called strong universality (with-
out encodings of the input and output) and we use the
standard type of register machines (using ADD and SUB
instructions). For this case, a universal register machine
with 8 registers and 23 instructions (the halting one in-
cluded) was constructed in Korec (1996). (The “code”
of the particular partial recursive function and the argu-
ment of the function are introduced in registers 1 and 2
of the universal machine and the value of the function for
that argument, if defined, is found in register 0 when/if
the machine halts.) Following then the construction of
an SN P system that simulate a register machine from
Ionescu et al. (2006), with some improvements inspired
from Ibarra et al. (in press) and some additional “code
optimization”, as well as a suitable INPUT module, we
get an SN P system with 84 neurons simulating the reg-
ister machine from Korec (1996).

We may formulate this result as follows: there is a
universal “brain” (in the form of an SN P system) with
only 84 neurons.

Of course, this number needs to be checked for op-
timality, but it is our expectation that in the framework
used here (with the type of SN P systems considered,
i.e. with standard rules) it is not possible to significantly
decrease the number of neurons.

However, if we allow rules which produce two or
more spikes, then a considerable improvement of the
previous result is obtained: 49 neurons are sufficient for
universality.

We consider then the case when SN P systems are
used for generating sets of numbers, starting from the
observation that a set Q ⊆ N is recursively enumerable
if and only if the characteristic function of Q (equal to 1

for elements of Q and undefined otherwise) is a partial re-
cursive function. Similar results as for the previous case
are obtained: 76 neurons are sufficient for universality
when using restricted rules and 50 when using extended
rules.

In the next section we introduce all necessary pre-
requisites related to register machines, universality, and
standard SN P systems. Section 3 gives the first universal
SN P system, and in Section 4 we introduce the extended
spiking rules and we produce the universal computing
SN P system with 49 rules. In Section 5 we consider the
case of universal SN P systems that work as generators
of sets of numbers.

2. Prerequisites

The reader is assumed to have some elementary
knowledge in theoretical computer science as available
from the many monographs in the field (e.g. from van
Leeuwen, 1990; Wood, 1987), so that we specify here
only some notations and basic definitions.

For an alphabet V, V ∗ denotes the set of all strings
over V, with the empty string denoted by λ.

A regular expression over an alphabet V is defined
as follows: (i) λ and each a ∈ V is a regular expres-
sion, (ii) if E1, E2 are regular expressions over V, then
(E1)(E2), (E1) ∪ (E2), and (E1)+ are regular expres-
sions over V, and (iii) nothing else is a regular expres-
sion over V. Clearly, we assume that the parentheses are
not in V; as a matter of fact, we will often omit “un-
necessary parentheses”. Also, E+

1 ∪ λ can be written as
E∗

1. With each expression E we associate its language
L(E) as follows: (i) L(λ) = {λ}, L(a) = {a}, for a ∈
V , (ii) L((E1)(E2)) = L(E1)L(E2), L((E1) ∪ (E2)) =
L(E1) ∪ L(E2), and L((E1)+) = L(E1)+, for all reg-
ular expressions E1, E2.

The operations used here are the standard union, con-
catenation, and Kleene +. We also need below the op-
eration of right derivative of a language L ⊆ V ∗ with
respect to a string x ∈ V ∗, which is defined by L/x =
{y ∈ V ∗|yx ∈ L}.

We proceed now to introducing the necessary notions
related to register machines and universality, then the
spiking neural P systems.

2.1. Universal register machines

We use here register machines given in the form
M = (m, H, l0, lh, I), where m is the number of regis-
ters, H the set of instruction labels, l0 the start label, lh
the halt label (assigned to instruction HALT), and I is the
set of instructions; each label from H is associated with
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