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ABSTRACT

Novel approaches to effectively reduce noise in data recorded from multi-trial physiology experiments
have been investigated using two-dimensional filtering methods, adaptive Wiener filtering and reduced
update Kalman filtering. Test data based on signal and noise model consisting of different conditions of
signal components mixed with noise have been considered with filtering effects evaluated using analysis
of frequency coherence and of time-dependent coherence. Various situations that may affect the filtering
results have been explored and reveal that Wiener and Kalman filtering can considerably improve the
coherence values between two channels of multi-trial data and suppress uncorrelated components. We
have extended our approach to experimental data: multi-electrode array (MEA) local field potential (LFPs)
recordings from the inferotemporal cortex of sheep and LFP vs. electromyogram (LFP-EMG) recording data
during resting tremor in Parkinson’s disease patients. Finally general procedures for implementation of

Electrophysiology

these filtering techniques are described.

© 2008 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

When dealing with electrophysiological recordings from the
brain, we are always faced with the problem of reducing noise in
order to better discriminate electrical signals. Noise can come from
external electrical or mechanical interference or can be intrinsic to
the recording apparatus or the brain itself. Therefore, after brain
recordings have been made, the first problem with the captured
data is how to selectively filter out the noise components reli-
ably so that the neural signals can be analysed. Fortunately, similar
problems are inherent to many signal processing and engineering
tasks and so many efficient filtering methods have been developed.
Two of the best known methods are Wiener and Kalman filtering
(Haykin, 2001). Both methods are optimal under a wide range of
conditions and there are many software packages utilising them
that are available in the public domain. Here we hoped initially
that by employing such filtering manipulations we could reduce
the influence of noise and improve subsequent analysis of different
types of electrophysiological recording signals. Wiener filtering has
been used to extract the evoked potential features from multiple
sweeps of scalp EEG recordings (Paul et al., 2001). Kalman filtering
approach has been applied to estimate and track the the dynamics
of EEG spectrum (Tarvainen et al., 2004).
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In our recording experiments a main objective is to explore cor-
related or synchronised information from simultaneously recorded
LFPs in vivo using multi-electrode array (MEA). These, as with most
typical conscious recording experiments, involve sessions where
each task that is required to be performed is repeated a number
of different times. Since data is therefore acquired over a number
of trial repetitions we can use the number of trials and the time
within each trial as indices for a two-dimensional representation
of the captured data. Thus the multi-trial electrophysiological data
can be shaped into an image format which implies an application
of 2D filtering algorithms.

Coherence analysis is widespread in analysing coupled rela-
tionships of two electrophysiological recordings such as EEG-EMG,
MEG-EMG or different units between multiple EEG and local field
potential (LFP) channels. Coherence detects common correlated
signal components in the two channels of recordings and its val-
ues are presented as a function of frequency:. If at certain frequency
bands there appears high coherence values we can conclude that
the two signals are synchronised at that frequency band. In real
applications estimation of coherence values can vary with the spe-
cific techniques such as the number of segments and the amount of
overlap between them (Terry and Griffin, 2008). Small level of syn-
chrony within the data and short trial duration can lead to small
coherence incidence and failure of detection (Terry and Griffin,
2008). This makes it difficult to distinguish real correlated spec-
tral components at different frequency range. The main reason of
such small coherence is that strong background noise prevails at
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all levels of electrophysiology data. Besides the same measure of
repeated experiment design tends to have stochastic factors within
it. We hope through coherence analysis of the filtered data we could
demonstrate the effectiveness of the 2D filters.

Our aim in this report is therefore to investigate whether such
two-dimensional “image” -based representation can suppress the
noise in raw electrophysiological recording data while retaining the
underlying oscillatory signals so that synchronised activity can be
readily and reliably detected with analysis of coherence.

2. Filtering Methods and Assessing Their Effectiveness

We have evaluated our filtering results using analysis of classic
coherence in frequency domain and time-dependent coherence in
joint time-frequency domain. Coherence is defined as the square
of the cross spectrum normalised by the individual autospectra.
For noisy electrophysiological data with low signal-to-noise ratio
(SNR), we anticipate that the improvement brought by our filtering
methods will be demonstrated by increased coherence values as an
indication of synchronised oscillations.

Performance of both 2D filters (Wiener and Kalman) in both
the frequency (via coherence) and time-frequency domains (via
time-dependent coherence) will first be assessed using a computer
simulation to generate two channels of multi-trial white noise pro-
cesses that contain within each trial a number of sinusoidal signals
that are mixed into the white noise with a low SNR. The aim of
this process is to evaluate the extent to which noise is reduced
while maintaining the spectral integrity of the sinusoidal signals.
The evaluation of the filtering results is via both frequency domain
coherence and time-dependent coherence, which uses short-time
Fourier transform (STFT) in the frequency domain and continuous
wavelet transform (CWT) in time-frequency domain. We model
the signal and noise under a series of low SNRs and evaluate the
coherence results as an indicator of SNR.

In the next step we will further modify our simulated data so
that sine waves are not regularly inserted in all the trials. Two sit-
uations are considered. The first one is to produce unmatched sine
waves so that in certain trials sine waves are absent in both chan-
nels. The second case is to introduce jittering across the trials so
that sine waves can jitter around certain fixed time point with vari-
able latencies. When the 2D data format is formed, data from each
trial are always stacked up by certain stimulus cues to common
starting point one can refer to ensure correct alignment. The jit-
tering of sine waves can also come from the misalignment of the
data with certain bias in each trial. These tests aim to examine the
filtering results in a broader sense because real data collected dur-
ing an experiment can be biased for various reasons; for example
inconsistent performance of the subjects or external interference.

We will further explore the possibility of applying our filter-
ing approach repeatedly. As is seen with single time filtering we
will assess whether our method can considerably improve coher-
ence values at correlated frequencies. The idea of such a repeated
manoeuvre is to test ifa maximal filtering result can be achieved and
to what extent the filtering can no longer improve the coherence
estimation.

Lastly the filtering algorithms will be applied to real electro-
physiological recordings of multi-unit LFPs recorded from the sheep
inferotemporal cortex (IT) and simultaneous LFP-EMG recordings
made from humans.

2.1. Adaptive Wiener Filtering

The first filter we use is adaptive Wiener filter. Wiener filtering
is regarded as an optimal filtering as it minimises the mean square
error (MSE) of the observed and the output signal of the filter. The

Wiener filter assumes that the signal s(m, n) at position (m, n) € Z2
in a local region is stationary, and within the local region the signal
is represented by Lim (1990)

S(mﬁn):MS‘l'O.SZW(m’n) (1)

where s and o5 are the local mean and standard deviation of
s(m, n), and w(m, n) is zero mean white noise with unit variance. It
is also assumed that the additive white noise v(m, n) has zero mean
and variance of o2 and the received signal is r(m, n) = s(m, n) +
v(m, n). In the application of image processing, a two dimensional
adaptive Wiener filter finds the local mean and variance around a
given pixel within its neighbourhood and the filtered value at each
pixel is given by the following formula (Lim, 1990)
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where b(m, n) is the filtered signal, us(m, n) is the local mean,
o2(m, n) is the local variance, and r(m, n) is the received signal. The
use of the estimation of the local variance instead of estimating
for the entire image results in a space-variant Wiener filter. The fil-
ter performs filtering pixel-wise in the local neighbourhood around
that pixel, and if the original data differs greatly from the local mean
the filter will adjust the filtered result adaptively, yielding a higher
or lower signal intensity depending on the difference (Lim, 1990).
The estimation of the local mean 15 and variance 05 can be done
in the local region R of size M x N following the equations below:
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2.2. Image Kalman Filtering

Kalman filter is another frequently used optimal filter. Since its
introduction in 1960, Kalman filtering has been applied in many
fields and has been the subject of extensive investigation. The
Kalman filter is often formulated in the form of a state-space model.
The application of a Kalman filter in image processing requires a
proper 2D model to be established before the recursive estima-
tion procedure can be applied. This approach is potentially different
from the Wiener type filter which is derived from the image power
spectrum and the chosen model can impact greatly on the filter-
ing results. In general, an autoregressive (AR) model can be viewed
as a candidate and the AR coefficients can be identified by the
Kalman filtering algorithm. There have been a number of previ-
ous attempts to apply Kalman filtering to image processing and in
which update and estimate of the parameters can be made in blocks
(Joetal., 1998) and pixels (Bouzouba and Radouane, 2000; Boutalis
et al,, 1990). One of the established methods is the reduced update
Kalman filter (RUKF) (Kaufman et al., 1983; Woods and Radewan,
1977). The image model of this method has its coefficients support
region in nonsymmetric half-plane (shown in Fig. 1) (Ekstrom and
Woods, 1976). Consider an image data with the density s(m, n) of
the pixel with horizontal coordinate m and vertical coordinate n, it
can be represented by Kaufman et al. (1983).

s(m,n) = Z
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