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In the big data era, voluminous datasets are routinely acquired, stored and analyzed with the aim to inform
biomedical discoveries and validate hypotheses. No doubt, data volume and diversity have dramatically in-
creased by the advent of new technologies and open data initiatives. Big data are used across the whole drug dis-
covery pipeline from target identification and mechanism of action to identification of novel leads and drug
candidates. Such methods are depicted and discussed, with the aim to provide a general view of computational
tools and databases available. We feel that big data leveraging needs to be cost-effective and focus on personal-
izedmedicine. For this,we propose the interplay of information technologies and (chemo)informatic tools on the
basis of their synergy.
© 2016 Katsila et al.. Published by Elsevier B.V. on behalf of the Research Network of Computational and Struc-

tural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Current trends in drug discovery focus on disease mechanisms and
their understanding, followed by target identification and lead com-
pound discovery. In the era of personalized medicine and better-
informed cost-effective public health outcomes, a system of personal-
ized medicine that is based on molecular states (and changes, from
DNA to RNA to protein) have become fundamental in drug discovery
[1,2]. To build such a system, the molecular characterization of disease
is necessary, while environmental influences and the gut microbiome

needs to be also considered [3,4]. At the same time, regulatory require-
ments of safety are increasing [5].

To address the above-mentioned interplay in high-throughput
formats, we feel that information technologies and chemoinformatic
tools need to be employed on the basis of a synergy that even extends
to artificial and human intelligence interplay - humans can detect pat-
terns, which computer algorithms may fail to do so, whereas data-
intensive and cognitively complex settings and processes limit human
ability [6]. We propose that this synergy will (i) facilitate collaborative
data analysis and (ii) guide sense- and decision-making towards rapid
and efficient data output. Big and diverse data demand strict filtering
and thorough analysis and interpretation. At the same time, biomedi-
cine scientists need to efficiently and effectively collaborate and make
decisions. For this, large-scale volumes of complex multi-faceted data
need to be meaningfully assembled, mined and analyzed [7]. In such a
context, reliable target identification and validation in cooperation
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with drug discovery methods will pave the way to more efficient
computer aided drug discovery. Moreover, new network-based compu-
tational models and systems biology integrate omics databases and op-
timize combinational regimens of drug development.

2. Target identification

Chemoinformatic tools present a tremendous potential to advance
in silico drug design and discovery, as they serve the integration of infor-
mation in several levels to enhance the reliability of data outcomes. To
name a few, chemical structure similarity searching [8], data mining/
machine learning [9], panel docking [10], and bioactivity spectra based
algorithms [11] have been routinely and successfully implemented
[12,13]. Some examples are the ligand-based interaction fingerprint
(LIFt) approach [14] in predicting potential targets for small-molecule
drugs using physics-based docking and samplingmethods and the pro-
tein ligand interaction fingerprints (PLIF) method [15] for summarizing
interactions between ligands and proteins using a fingerprint scheme.
In both cases, compounds were identified for the p38α MAP kinase
and GPR17, respectively (Table 1).

Target identification can also be studied through network-based
drug discovery, a field integrating different levels of information in
drug-protein and protein-disease networks. This approach involves a
highly collaborative scheme between databases and correlations across
genomics, transcriptomics, proteomics, metabolomics, microbiome,
pharmacogenomics, which highly depends on the development of rele-
vant computational and systems biology tools for such data interpreta-
tion [16,17]. Such approaches, for example relating pharmacological
and genomic spaces can be used to develop computational frameworks
for drug target identification [18]. Another recent network-based applica-
tionwas the integrationof large-scale structural genomics anddisease as-
sociation studies, to generate three-dimensional human interactome,
that resulted in the identification of candidate genes for unknown
disease-to-gene associations with proposed molecular mechanisms [19].

To facilitate gaining in-depth knowledge of disease mechanisms
and/or phenotypes information technologies are greatly needed today
more than ever [20]. Indeed, the study of disease mechanisms and/or
phenotypes has turned from investigating a particular gene or protein
into the analysis of entire sets of biomolecules [21]. The advent of
omics technologies further complicates storing, visualizing and analyz-
ing voluminous biological data. For this, information technologies pro-
vide the means towards extensive data processing and interpretation.
Tools such as the humanmetabolome database [22] andMetaboAnalyst
[23] support integrative omics pathway analysis. The human metabo-
lome database contains metabolite entries linked with chemical,
clinical, andmolecular biology data, that can assist applications inmeta-
bolomics, clinical chemistry and biomarker discovery. Metaboanalyst is
a web-based analytical pipeline for high-throughput metabolomics

studies, which offers a variety of procedures for metabolomic data pro-
cessing and integrates biomarker and pathway analysis. MAGENTA
(http://www.broadinstitute.org/mpg/magenta/) and Ingenuity (http://
www.ingenuity.com/) users can further exploit several curated biologi-
cal pathways. Databases play a key role and no doubt, an extremely rich
repertoire is available today (Table 2). When kinome is of interest, a
computational platform ReKINect has been recently reported to identify
network-attacking mutations and validated with the interpretation of
exomes and quantitative proteomes of ovarian cancer cell lines and
the global cancer genome repository [24]. Another useful approach
helping to identify functional connections between diseases, genes
and drugs is the Connectivity Map [25]. Connectivity Map is a collection
of genome-wide transcriptional expression data from cultured human
cells treated with bioactive small molecules and simple pattern-
matching algorithms that together enable the discovery of functional
connections between drugs, genes and diseases through the transitory
feature of common gene-expression changes [26]. Other computational
methods have been also applied to reconstruct biological networks and
extract information from them, such as Bayesian [27] and Boolean net-
works [28] and graph based models [29].

Furthermore, applications and web services, enable sharing of data
and resources for visualization and analysis purposes. The Biological
General Repository for Interaction Datasets (BioGRID) [30] is an interac-
tion repository with compiled biological data freely available in stan-
dardized formats, linked with software platforms for visualization of
complex interaction networks such as Osprey [31] and Cytoscape [32].
BioMart, is a community-driven project, which call for scientists to

Table 1
Drug targets and computational methods used for compound identification and interaction prediction.

Drug target Computational approach Reference

p38α MAP kinase Ligand-based interaction fingerprint (LIFt) [14]
GPR17 Protein ligand interaction fingerprints (PLIF) method [15]
Transforming growth factor-b 1 receptor kinase (TGFβ) Shape-based screening (CatShape, Catalyst) [49]
T-type calcium channel (CaV) Bidimensional pharmacophoric fingerprints (ChemAxon and CCG's GpiDAPH3 fingerprints) [68]
Metabotropic glutamate receptor 5 (mGlu5) Artificial neural network (ANN) quantitative structure–activity relationship (QSAR) [72]
prostaglandin D2 receptor 2 (CRTH2) Proteochemometrics modeling (PCM) [76]
HUMAN immunodeficiency virus 1 reverse transcriptase (HIV-1 RT) Molecular mechanics energies combined with the Poisson-Boltzmann surface area (MM-PBS) [84]
Biotin Molecular dynamics/free energy perturbation (FEP) [85]
β-Secretase (BACE) Linear interaction energy (LIE) [86]
Chemo-attractant receptor (OXE-R) Docking virtual screening (PyPx and AutoDock Vina) [90]
Angiotensin II receptor type 1 (AT1) Ligand based pharmacophore modeling (Catalyst) [91]
Pim-1 kinase Docking virtual screening (Glide) [104]
Epidermal growth factor receptor (EGFR)/Bromodomain-containing
protein 4 (BRD4)

Docking virtual screening (Glide) [105]

Calcineurin Structure based pharmacophore virtual screening (Discovery Studio) [106]

Table 2
Web-accessible databases for drug target identification.

Utility Url

Human metabolome data http://www.hmdb.ca
In silico target identification http://www.dddc.ac.cn/pdtd/

Pathway analysis

http://www.genome.jp/kegg/
http://www.geneontology.org
http://www.reactome.org
http://www.pantherdb.org
http://www.biocarta.com
http://www.ingenuity.com/

Chemogenomic data
http://www.ebi.ac.uk/chembldb
http://pubchem.ncbi.nlm.nih.gov

Drug target database http://www.drugbank.ca
Protein data bank http://www.pdb.org
Disease specific target database http://thomsonreuters.com/metacore
Pharmacogenomic data http://www.pharmgkb.org
Multi-level drug data http://r2d2drug.org/DMC.aspx
Comparative toxicogenomic database http://ctdbase.org
Target-toxin database http://www.t3db.org
Protein expression information http://www.proteinatlas.org
Therapeutics target database http://bidd.nus.edu.sg/group/cjttd/
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