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With next generation sequencing thousands of virus and viral vector integration genome targets are now under
investigation to uncover specific integration preferences and to define clusters of integration, termed common
integration sites (CIS), that may allow to assess gene therapy safety or to detect disease related genomic features

Here, we addressed the challenge to: 1) define the notion of CIS on graph models, 2) demonstrate that the struc-
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ture of CIS enters in the category of scale-free networks and 3) show that our network approach analyzes CIS dy-
namically in an integrated systems biology framework using the Retroviral Transposon Tagged Cancer Gene
Database (RTCGD) as a testing dataset.

© 2016 Fronza et al.. Published by Elsevier B.V. on behalf of the Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Viral vector integration is a process exploited in gene therapy (GT)
to correct defective cells of an individual and to drive the health status
from the pathological condition to a normal one [1-6]. As consequence
of this perturbation, i.e. if vectors integrate into cellular genome posi-
tions where the expression of an important gene is dysregulated, the af-
fected cell may step from the primary illness state to a secondary state.
Thus, insertional mutagenesis is a potential risk that may accompany
vector integration events [7-11].

Therefore, large insertional mutagenesis screenings are used to as-
sess the safety of the treatment in clinical GT, to design safer GT proto-
cols and to discover new disease (i.e. cancer) candidate genes [12-16].

The central role in integration site (IS) analyses is given in the assess-
ment of the genome-wide integration profile and the identification of
integration clusters that could alter gene expression. The definition of
these clusters or common integration sites (CIS) is not standardized
and usually based on accumulation of IS that are unlikely to occur by
chance and statistically significant different compared to a random in
silico control. A regular interpretation (Standard Windows Method,
SWM) is founded on the number of integrations in a predefined geno-
mic window, that classifies CIS as follows: a) 2 IS are within 30 Kb or
b) 3 IS within 50 Kb or c) 4 IS within 100 Kb or d) >5 IS within 200 Kb
[17,18]. It is obvious that this historical definition can be used only as
a first approximation for discovery of biologically (and clinically)
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relevant CIS, because the results are highly dependent from the size of
the IS dataset [19]. Even if methods not constrained on a predefined
set of fixed windows were released [20-23], the data importation to-
gether with CIS generation and analysis remain tedious tasks. The static
tabular and text oriented nature of the CIS representation requires ex-
tensive processing steps that can involve custom programming, format
exchanging and manual interpretation of the results. These computa-
tional difficulties reduce the analysis capability of standard life science
labs and strictly rely on elevated bioinformatics skills.

We hypothesized that in the next generation sequencing area
only systems biology approaches may be able to dissect biologically
(and clinically) relevant CIS. Here, we developed a new CIS construction
framework using an approach based on graphs. This approach has nu-
merous advantages: 1) the resulting CIS are represented by networks,
2) graph theory can be used to infer characteristics and properties of
the integration process (i.e. the node degree distribution of the net-
works can be linked to the randomness of the integration process, and
3) a large repertoire of IS can be imported and parsed without any
prior constraint (except for the maximal distance between two IS).

More in detail, the graph model allows an easy structural organiza-
tion of the annotations in the Gene Atmosphere (GA) (e.g. protein
coding atmosphere, post-transcriptional atmosphere, etc.) by using dif-
ferent layers of node categories while performing the enrichment as de-
scribed in Paragraph 2.6. The implementation of this model in software
tools, which allow networks visualization, provides a broader overview
of the data at a glance. An example of this feature is depicted in Fig. 3
where the CIS network is disposed on a plane by applying a force-
directed layout. Furthermore, with the availability of Hi-C data, this
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framework is ready to embed relations among CIS in the spatial organi-
zation of the genome, enriching the modeling to a multidimensional
level [24] (i.e. moving from a linear genomic vicinity modeling to a
topological genomic modeling). Another interesting feature which
emerges using this graph model is the capability of assessing biological
properties by exploiting topological characteristics of the network. For
example, the scale-free distribution of a set of CIS can be used to estab-
lish if the dataset under analysis contains genomic regions enriched in
IS, an observation that is a prerequisite in order to properly recognize
CIS.

Recent approaches to the identification of hot-spots try to take into
account the size of the IS's dataset and the prior knowledge about vector
integration preferences [23]. The implementation of this graph model
on a normal computer machine could be greedy of computational re-
sources when dealing with very huge IS datasets (i.e. millions of
nodes). To our knowledge, there are no IS datasets in literature big
enough that cannot be easily represented by our model. Enhanced
with annotated genomic data, this model could be easily extended in
order to drive the identification of CIS exploiting the information
contained in the annotations. It is our intention to evaluate this possibil-
ity in future. One of the main differences between our model and the
statistical frameworks used to the identification of CIS is that here the
statistical method is applied after the CIS identification leaving to the
user of the model the ability to give a biological meaning to the CIS
(e.g. the CIS is not excluded a priori by the statistical method). With
the complex annotation feature, as described in Paragraph 2.6, our
model is able to perform a many-to-many mapping against genomic
features (i.e. genes) and integration sites while other methods just per-
form a one-to-one mapping (i.e. one gene, one IS). In this way, our
model provides a more refined granularity, when it is enhanced with
complex annotation, allowing the simultaneous representation of dif-
ferent genomic features in the model (i.e. transcriptional elements, pro-
tein coding genes, etc.), that other models do not allow.

A Cytoscape [25] draft prototype plugin was developed to test the
framework of this paper.

2. Results and Discussion
2.1. CIS Definition

First of all we define what a common integration site is. A set of n IS
in the database is represented as the set of n vertices V of the graph G.
Then, for each couple of vertices v;and v; (i,j = 1, 2, ..., ni #j) we add
an edge e if the distance between the corresponding IS is below a
threshold Ty of 50 Kbp. A weight wj; is associated with the edge e;; and
represents the distance between the corresponding IS. The default
value of 50 Kbp was selected using the maximal influence window
size where a causal relation is found between an insertion event and
gene expression [22]. De Jong showed that the presence of viral integra-
tion is correlated with the local amount of gene expression and that
50 Kbp is an upper bound on which the presence of IS can be linked
with gene expression. At the end of this process, we obtain the undirect-
ed weighted graph G = (V, e) as abstract representation of all the dis-
tance relations in the IS dataset. The graph G is composed by a set of
unconnected subgraphs (Connected Components, CC). Each CC is the
natural graph representation of a CIS in which the order is represented
by the number of vertices.

2.2. Integration Process and Node Degree Distribution

The non-random character of virus and viral vector integration sug-
gests the existence of sub genomic regions that are preferentially
targeted. As many complex biological systems where many components
interact together, also the viral integration process derives from intri-
cate functional interactions that involve viral and host proteins/DNA.
The behaviors of complex systems are captured by a characteristic of

the network that is called scale-free property [26-28]. This property de-
pends on the distribution of the nodes degree. The node degree is the
number of edges that connect a node with the neighbors. The degree
distributions of several networks follow a power law, precisely defined
with the functional d(k) = ak™", where d(k) is the degree distribution,
k= 0,1,2,... is the node degree, a is the normalization constant and y is
the degree exponent. In scale-free network the exponent is usually less
than three (7y < 3), whereas in random networks 7y > 3.

To prove that the mechanism of viral CIS or hot-spot (HS) formation
is embedded via scale-free property into the network representation,
we developed a series of synthetic transfection experiments that
consisted of placing a fixed number of integrations on human genome
carrying a random number of artificial hot-spots. The integrations
were divided in two subsets: 1) IS placed on a simulated genome with
hot-spots (ISsyn) and 2) IS randomly placed on a genome without hot-
spots (ISganp). The scale-free property of CIS networks found in ISganp
and ISsyy was then verified using the Cytoscape “Network Analysis”
plugin.

We further verified the presence of a HS driven mechanism on six
datasets: five in which we expected a scale free behavior (LV [1], HIV
[29], GV1 [2], GV2 [16] and RTCGD [12]); and one from an adeno-
associated viral (AAV) vector study [30] where we expected a random
integration profile. In Fig. 1 the degree distributions of the groups of
the experimental IS sets are plotted. The richness in integration sites
of the datasets is: ~1000 ISsyn (g), ~15,000 ISganp (€), ~4000 IS,y (b),
~2000 lSAA\/ (a), ~35,000 lSH[V (d), ~15,000 ISG\” (h), ~800 ISGVZ (C),
and ~8800 ISgrcgp (f). All the experimental and synthetic sets, except
for the AAV and RAND set, have a log-log degree distribution that fol-
lows a power law with gamma exponent <y < 3. Only two datasets, the
random dataset ISganp (Y = 3.6) and ISaav (Y = 4.8) have no scale-
free degree distribution. This last finding is in line with our and other
published studies that did not attribute to AAV any HS driven integra-
tion pattern [30,31]. From a practical point of view and as a first result
of our graph modeling, the node degree distribution in a network that
represent integration events indicate the presence of an accumulation
process driven by genomic hotspots.

Réka [26] demonstrated that complex systems that display a high
degree of error tolerance (robustness) are represented by scale-free
networks. An incomplete IS dataset can be seen as the result of a process
that remove IS from the complete basin of integrations present in a sam-
ple, due to unavoidable experimental subsampling. Recalling the ro-
bustness property for scale free networks we can prove that genomic
hot-spots are identified even within an incomplete set of experimental
IS.

2.3. General Structure of the CIS Pool and RTCGD Dataset

The Retroviral Transposon tagged Cancer Gene Database (RTCGD;
http://variation.osu.edu/rtcgd/, [12]) was used as test case for our
graph model.

The RTCGD dataset has been first analyzed in order to compare two
general CIS properties, the order and the dimension of the 10 biggest CIS
identified by our framework and the SWM. Fig. 2(A) shows the general
structure and shape of all the CIS with order bigger than 9 as they appear
analyzing RTCGD integration.

5110 IS are selected by the CIS construction tool as belonging to re-
puted CIS and 4035 compose CIS with p-value < 0.05 (see Appendix A
Table 1 in [41]). How the p-value is computed per CIS is explained in
the Paragraph 3.6. The CIS order goes from 2 to 82 (in Fig. 2(A) CIS
from order 2 to order 8 are not shown). RTCGD data contains 2910 IS
and the CIS falls in the same range order. No statistical model is applied
in order to test the CIS significance.

In the 10 biggest CIS the order and dimension of 3 of them (myc, ahi
and rasgrp1) were returned identical by the analysis performed using
our model and RTCGD and other 4 CIS (gifl, lvis1, pim1 and notch1)
were comparable (difference in the order is less than 10; see Table 1).


http://variation.osu.edu/rtcgd/

Download English Version:

https://daneshyari.com/en/article/2079087

Download Persian Version:

https://daneshyari.com/article/2079087

Daneshyari.com


https://daneshyari.com/en/article/2079087
https://daneshyari.com/article/2079087
https://daneshyari.com/

