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A fundamental concern of a theory of statistical inference is how one should measure statistical evidence.
Certainly the words “statistical evidence,” or perhaps just “evidence,” are much used in statistical contexts. It is
fair to say, however, that the precise characterization of this concept is somewhat elusive. Our goal here is to pro-
vide a definition of how to measure statistical evidence for any particular statistical problem. Since evidence is
what causes beliefs to change, it is proposed to measure evidence by the amount beliefs change from a priori
to a posteriori. As such, our definition involves prior beliefs and this raises issues of subjectivity versus objectivity
in statistical analyses. This is dealt with through a principle requiring the falsifiability of any ingredients to
a statistical analysis. These concerns lead to checking for prior-data conflict and measuring the a priori bias in
a prior.
© 2016 Evans. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

There is considerable controversy about what is a suitable theory of
statistical inference. Given that statistical reasoning is used throughout
science, it is important that such a theory be sound, in the sense that it
is free from illogicalities and counterexamples, and be complete, in the
sense that it produces unambiguous answers to all properly expressed
statistical problems.

It is our contention that any such theory must deal explicitly with
the concept of statistical evidence. Statistical evidence is much referred
to in the literature, but most theories fail to address the topic by pre-
scribing how it should be measured and how inferences should be
based on this. The purpose of this paper is to provide an outline of a the-
ory based on an explicit measure of statistical evidence.

Before describing this, there are several preliminary issues that need
to be discussed. To start, we are explicit about what could be seen as the
most basic problem in statistics and to which all others are related.

Example 1. The Archetypal Statistical Problem.

Suppose there is a populationΩwith#(Ω)b∞. SoΩ is just a finite set
of objects. Furthermore, suppose that there is a measurement X:Ω→χ.
As such X(ω)∈χ is the measurement of object ω∈Ω.

This leads to the fundamental object of interest in a statistical prob-
lem, namely, the relative frequency distribution of X over Ω or, equiva-
lently, the relative frequency function fX(x)= #({ω :X(ω)=x})/#(Ω)
for x∈X . Notice that the frequency distribution is defined no matter
what the set χ is. Typically, only a subset {ω1,… ,ωn}⊂Ω can be ob-
served giving the data xi=X(ωi) for i=1,… ,n where n≪ #(Ω), so
there is uncertainty about fX.

The standard approach to dealingwith the uncertainty concerning fX
is to propose that fX∈{fθ:θ∈Θ}, a collection of possible distributions, and
referred to as the statistical model. Due to the finiteness of Ω, and the
specific accuracy with which X(ω) is measured, the parameter space Θ
is also finite.

Note that in Example 1 there are no infinities and everything is de-
fined simply in terms of counting.

So the position taken here is that in statistical problems there are es-
sentially no infinities and there are no continuous distributions. Infinity
and continuity are employed as simplifying approximations to a finite
reality. This has a number of consequences, for example, any counterex-
ample or paradox that depends intrinsically on infinity is not valid. Also,
densities must be defined as limits as in fθ(x)=limϵ→0Pθ(Nϵ(x))/
Vol(Nϵ(x)) where Nϵ(x) is a set that shrinks nicely to x, as described in
Rudin [27], so Pθ(Nϵ(x))≈ fθ(x)Vol(Nϵ(x)) for small ϵ.

To define a measure of evidence we need to add one more ingredi-
ent, namely, a prior probability distribution as represented by density
π onΘ. For some, the addition of the priorwill seem immediately objec-
tionable as it is supposed to reflect beliefs about the true value of θ∈Θ
and as such is subjective and so unscientific. Our answer to this is that
all the ingredients to a statistical analysis are subjective with the excep-
tion, at least when it is collected correctly through random sampling, of
the observed data. For example, amodel {fθ:θ∈Θ} is chosen and there is
typically no greater foundation for this than it is believed to be reason-
able, for example, this could be a set of normal distributions with un-
known mean and variance.

The subjective nature of any statistical analysis is naturally of con-
cern in scientific contexts as it is reasonable toworry about the possibil-
ity of these choices distorting what the data is saying through the
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introduction of bias. We cope with this, in part, through the following
principle.

Principle of empirical criticism: Every ingredient chosen by a statis-
tician as part of a statistical analysis must be checked against the ob-
served data to determine whether or not it makes sense.

This supposes that the data, which hereafter is denoted by x, has
been collected appropriately and so can be considered as being
objective.

Model checking, where it is asked if the observed data is surprising
for each fθ in the model, is a familiar process and so the model satisfies
this principle. It is less well-known that it is possible to provide a consis-
tent check on the prior by assessingwhether or not the true value of θ is
a surprising value for π. Such a check is carried out by computing a tail
probability based on the prior predictive distribution of a minimal suffi-
cient statistic (see Evans andMoshonov [20,21]). In Evans and Jang [16]
it is proved that this tail probability is consistent in the sense that, as the
amount of data grows, it converges to a probability that measures how
far into the tails of the prior the true value of θ lies. Here “lying in the
tails” is interpreted as indicating that a prior-data conflict exists since
the data is not coming from a distribution where the prior assigns
most of the belief. In Evans and Jang [17] it is shown how this approach
to assessing prior-data conflict can be used to characterizeweakly infor-
mative priors and also how tomodify a prior, when such a conflict is ob-
tained, in a way that is not data dependent, to avoid such a conflict.
Further details and discussion on all of this can be found in Evans [13].
As such, the prior satisfies this principle as well. Just as with model
checking, if the prior passes its checks this does not mean that the
prior is correct, only that beliefs about θ, as presented by the prior,
have not been contradicted by the data.

It is to be noted that, for any minimal sufficient statistic T,
the joint probability measure Π×Pθ for (θ,x) factors as Π×Pθ=
Π(⋅| T)×MT×P(⋅| T) where P(⋅| T) is conditional probability of the
data given T,MT is the prior predictive for T andΠ(⋅| T) is the posterior
for θ. These probability measures are used respectively for model
checking, checking the prior and for inference about θ and, as such,
these activities are not confounded. Hereafter, it is assumed that the
model and prior have passed their checks so we focus on inference. It
is not at all clear that any other ingredients, such as loss functions, can
satisfy the principle of empirical criticismbut, to define ameasure of ev-
idence nothing beyond themodel and the prior is required, so this is not
a concern.

Given amodel {fθ:θ∈Θ}, a priorπ and data x, we pose the basic prob-
lems of statistical inference as follows. There is a parameter of interest
Ψ :Θ→Ψ (we do not distinguish between the function and its range
to save notation) and there are two basic inferences.

Estimation: Provide an estimate of the true value ofψ=Ψ(θ) togeth-
er with an assessment of the accuracy of the estimate.

Hypothesis assessment: Provide a statement of the evidence that the
hypothesis H0:Ψ(θ)=ψ0 is either true or false together with an as-
sessment of the strength of this evidence.

Someof the statement concerning hypothesis assessment is in italics
because typically themeasure of the strength of the evidence is not sep-
arated from the statement of the evidence itself. For example, large
values for Bayes factors and very small p-values are often cited as corre-
sponding to strong evidence. In fact, separating themeasure of evidence
from a measure of its strength helps to resolve various difficulties.

There are of course many discussions in the statistical literature
concerning the measurement of evidence. Chapter 3 of Evans [13] con-
tains extensive analyses ofmany of these and documentswhy they can-
not be considered as fully satisfactory treatments of statistical evidence.
For example, sections of that text are devoted to discussions of pure
likelihood theory, frequentist theory and p-values, Bayesian theories

and Bayes factors, and fiducial inference. Some of the salient points
are presented in the following paragraphs together with further
references.

Edwards [10] and Royall [26] develop an approach to inference
based upon recognizing the centrality of the concept of statistical evi-
dence and measuring this using likelihood ratios for the full model pa-
rameter θ. A likelihood ratio, however, is a measure of relative
evidence between two values of θ and is not a measure of the evidence
that a particular value θ is true. The relative belief ratio for θ, defined in
Section 2, is a measure of the evidence that θ is true and furthermore a
calibration of this measure of evidence is provided. While these are sig-
nificant differences in the two approaches, there are also similarities be-
tween the pure likelihood approach and relative belief approach to
evidence. For example, it is easily seen that the relative belief ratio for
θ gives the same ratios between two values as the likelihood function.
Another key difference arises, however, when considering measuring
evidence for an arbitrary ψ=Ψ(θ). Pure likelihood theory does not
deal with such marginal parameters in a satisfactory way and the stan-
dard recommendation is to use a profile likelihood. A profile likelihood
is generally not a likelihood and so the basic motivating idea is lost. By
contrast the relative belief ratio for such a ψ is defined in a consistent
way as a measure of change in belief.

In frequency theory p-values are commonly used asmeasures of ev-
idence. A basic issue that arises with the p-value is that a large value of
such a quantity cannot be viewed as evidence that a hypothesis is true.
This is because in many examples, a p-value is uniformly distributed
when the hypothesis is true. It seems clear that any validmeasure of ev-
idence must be able to provide evidence for something being true as
well as evidence against and this is the case for the relative belief
ratio. Another key problem for p-values arises with so-called “data
snooping” as discussed in Cornfield [6] where an investigator who
wants to use the standard 5% value for significance can be prevented
from ever attaining significance if they obtain a slightly larger value
for a given sample size and then want to sample further to settle the
issue. Royall [26] contains a discussion of many of the problems associ-
ated with p-values as measures of evidence. A much bigger issue for a
frequency theory of evidence is concerned with the concept of ancillary
statistics and the conditionality principle. The lack of a unique maximal
ancillary leads to ambiguities in the characterization of evidence as ex-
emplified by the discussion in Birnbaum [2], Evans, Fraser and Monette
[14] and Evans [12]. A satisfactory frequentist theory of evidence re-
quires a full resolution of this issue. The book Taper and Lele [29] con-
tains a number of papers discussing the concept of evidence in the
frequentist and pure likelihood contexts.

In a Bayesian formulation the Bayes factor is commonly used as a
measure of evidence. The relationship between the Bayes factor and
the relative belief ratio is discussed in Section 2. It is also the case, how-
ever, that posterior probabilities are used as measures of evidence. Rel-
ative belief theory, however, draws a sharp distinction between
measuring beliefs, which is the role of probability, and measuring evi-
dence, which is measured by change in beliefs from a priori to a
posteriori. As discussed in the following sections, being careful about
this distinction is seen to resolve a number of anomalies for inference.
Closely related to Bayesian inference is entropic inference as discussed,
for example, in Caticha [3,4]. In entropic inference relative entropy plays
a key role in determining how beliefs are to be updated after obtaining
information. This is not directly related to relative belief as discussed
here, although updating beliefs via conditional probability is central to
the approach and so there are some points in common. Another ap-
proach to measuring statistical evidence, based on a thermodynamical
analogy, can be found in Vieland [31].

The Dempster–Shafer theory of belief functions, as presented in
Shafer [28], is another approach to the development of a theory of evi-
dence. This arises by extending the usual formulation of probability, as
themeasure of belief in the truth of a proposition, towhat could be con-
sidered as upper and lower bounds on this belief. While this clearly
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