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Globular proteins are held together by interacting networks of amino acid residues. A number of different struc-
tural and computational methods have been developed to interrogate these amino acid networks. In this review,
we describe some of these methods, including analyses of X-ray crystallographic data and structures, computer
simulations, NMR data, and covariation among protein sequences, and indicate the critical insights that such
methods provide into protein function. This information can be leveraged towards the design of new allosteric
drugs, and the engineering of new protein function and protein regulation strategies.
© 2016 O'Rourke et al. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural

Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

It has long been understood that interactions at the local level (e.g. H-
bonding, steric interactions) dictate the formation of protein structural el-
ements, such as α-helices and β-sheets, and that local interactions also
dictate the packing of these various structural elements to form three-
dimensional protein structure (e.g. ref. [1,2]). There is also now a better
appreciation for the local interactions that are important for loop struc-
ture and dynamics (e.g. ref. [3]). With these energetic considerations in
mind, globular proteins can be viewed as being held together by a series
of local interactions through networks of interacting amino acid residues.
These amino acid networks (Fig. 1) have also been termed ‘residue inter-
action networks’ [4], ‘protein structure networks’ [5], ‘contact networks’
[6], ‘pathways’ [7], ‘circuits’ [8], ‘wiring diagrams’ [9], ‘protein sectors’
[10] and so on. Intrinsic to this viewpoint is the idea that some interac-
tions and amino acid residues are more important than others, such
that the amino acid network generally represents a subset of all potential

interactions and residues within a protein. In some cases, there may be
multiple amino acid networks identified (e.g. ref. [11]), where local
changes primarily affect the interactions between the amino acid residues
involved in a particular network.

A variety of diverse structural and computational methods have been
developed to delineate amino acid networks in proteins, and these
methods have provided tremendous insights into protein function. In
this Review, we highlight some of the different computational and exper-
imental methods that have been used to delineate amino acid networks
in proteins (Table 1), and indicate the insight that these approaches
have given regarding protein function. We note that other recent review
articles have been written on many of these methods, including graph
theory [6], molecular dynamics (MD) simulations [12], elastic network
models (ENM [13]), NMRmethods to study allostery and amino acid net-
works [14] and bioinformatics methods to identify co-evolving residues
[15], and as such, we do not treat these methods comprehensively. We
also recognize that the length of this review prevents us from being ex-
haustive with our examples.

2. Network approaches to understanding protein function

In biology, network interactions have been analyzed from the spe-
cies to the molecular level [16–18]. The elegance of this mathematical
theory is to simplify a complex problem into a set of nodes and edges,
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together known as a ‘graph’ [19–21]. Graphical approaches have provid-
ed intuitive pictures and useful insights for analyzingmany complex bi-
ological problems, including enzyme-catalyzed reactions [22–24],
inhibition of HIV-1 reverse transcriptase [25], inhibition kinetics of
processive nucleic acid polymerases and nucleases [26], protein folding
kinetics [27] and drug metabolism systems [28]. In the context of pro-
tein structure, the amino acid side-chains, orwhole amino acid residues,
aremost commonly treated as the nodes. An edge represents some type
of interaction between two nodes. Edges can have a range of definitions
such as the calculated energy of interaction, evolutionary conservation,
or surface overlap [29–32]. An important feature of edges is the
weighting, which may allocate different strengths to different types of
interactions and/or provide a particular cut-off distance for residues in
close sequence space [33]. There are many algorithms available to
construct and analyze amino acid networks using graph theory,
including CSU software [34], xPyder [35], PSN-Ensemble [36] and
NetworkAnalyzer [37].

Other parameters of the protein graphmay be used to further analyze
the network, and be related to different structural and functional proper-
ties of the protein. For example, a ‘hubnode’has a higher number of edges
connected to it than other nodes [38] (Fig. 1). Residues corresponding to
hub nodes may be key factors for maintaining structure and determining
function. For example, a large experimental set of T4 lysozyme protein
variants was studied, where some amino acid substitutions had little to
no effect on the function of the enzyme and some substitutions
inactivated the protein [39]. All of the deleterious substitutions were
later identified as central hub nodes [40].

Connectivity is an important feature of a protein graph. The clustering
coefficient, Cv, provides a measure of connectivity through Eq. (1):

Cv ¼ 2ev
kv kv−1ð Þ ð1Þ

where kv is the number of neighbors to node v, and ev is the number of
connected pairs among v neighbors. Residues that have a high connec-
tivity are typically linked to separate clusters or communities of resi-
dues [38]. The assortativity matrix is another parameter that helps
determine the impact a node has on the network (Fig. 1). This matrix
is a measure of the number of connections between nodes. A more ‘re-
silient’ network [41] would have a higher assortativity, providingmulti-
ple paths to connect distant regions of the protein.

A group of nodes can be classified into different types according to
how a signal might be transmitted through them (Fig. 1). A clique (or
k-clique) is a complete subgraph, meaning that it is a set of nodes and
edges that are connected to every other node in the subgraph [38]. Sim-
ilar to cliques are communities, which represent a set of connected
cliques [38]. Inspection of the cliques and communities in a given
protein might be used to track small ligand-induced conformational
changes and signal transmission, which can be indicative of the interac-
tion strength of the effectormolecule and the quality of the network as a
whole. For example, differences in the cliques and communities be-
tween the apo and ligand bound states of methionyl t-RNA synthetase
were used to understand inter-domain signaling [42]. The binding of
ATP induces the formation of new cliques that allow for communication
between distal areas of the enzyme.

A cluster has more relaxed requirements than a clique or a commu-
nity (Fig. 1). In a cluster, the nodes have a higher connectivity with each
other than with nodes outside the group, but not all interact pairwise
[38]. The largest cluster may be important in defining the core of the
protein and can involve up to 80% of the nodes in the entire network.
For example, identification of hydrophobic subclusters was used to un-
derstand long-range interactions important for stabilizing the tertiary
fold of proteins [43]. In this study, it was found that the clusters were
larger in thermophilic proteins, which may lead to higher temperature
stability.

Measures of residue centrality, including closeness (Cn) and be-
tweenness, are often used to predict residues important for the trans-
mission of information across a protein structure. The closeness
centrality [44] is defined according to Eq. (2):

Cn ¼ j−1X
i≠n

sd i;nð Þ ð2Þ

where sd(i,n) is the shortest path between nodes i and n, and j is the
number of nodes in the network. The betweenness centrality B is
determined as the fraction of shortest paths that pass through a node
[45]. Residues with high Cn or B have been shown to play critical roles
in protein function [40,46,47]. Other measures of residue centrality
have been proposed (e.g. ref. [48,49] and references therein). Recent
examples using these types of approaches include studies analyzing
allosteric pathways in tRNA synthetases [50], G-protein coupled
receptors [51], Hsp90 [52] and cyclophilin A [53].

3. More sophisticated structure-based approaches to network
analysis

Conformational fluctuations in proteins are important in mediating
their biological functions. For example, E. coli dihydrofolate reductase
(DHFR) must pass through multiple conformations as it proceeds
through its catalytic cycle [54]. Smaller fluctuations, such as those in
side chains, may be evident in X-ray diffraction data [55], though they
may be ignored during the refinement process when producing a struc-
tural model. The qFit algorithm was developed to fit these alternative

Fig. 1. Proteins can be viewed as interacting networks of amino acid residues. A. Partial
network in the alpha subunit of tryptophan synthase (PDB 1K3U) identified by NMR
methods [93]. In the network representation, the nodes are the amino acid residues and
represented by circles, and the edges are interactions between the residues and are
indicated by lines joining the circles. B. Concepts related to network theory, including
hub residues, assortativity and clustering. C. Networks can follow a hierarchy of
connectivities, ranging from smaller cliques to larger clusters. Panels B and C were
adapted from ref. [38].
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