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Infectious diseases are the leading cause of death, particularly in developing countries. Althoughmany drugs are
available for treating themost common infectious diseases, inmany cases themechanism of action of these drugs
or even their targets in the pathogen remain unknown. In addition, the key factors or processes in pathogens that
facilitate infection and disease progression are often not well understood. Since proteins do notwork in isolation,
understanding biological systems requires a better understanding of the interconnectivity between proteins in
different pathways and processes, which includes both physical and other functional interactions. Such biological
networks can be generated within organisms or between organisms sharing a common environment using ex-
perimental data and computational predictions. Though different data sources provide different levels of accuracy,
confidence in interactions can bemeasured using interaction scores. Connections between interacting proteins in bi-
ological networks can be represented as graphs and edges, and thus studied using existing algorithms and tools from
graph theory. There are many different applications of biological networks, and here we discuss three such applica-
tions, specifically applied to the infectious disease tuberculosis, with its causative agentMycobacterium tuberculosis
and host, Homo sapiens. The applications include the use of the networks for function prediction, comparison of net-
works for evolutionary studies, and the generation and use of host–pathogen interaction networks.
© 2014 Mulder et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and

Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The biology of organisms is complex and involves the interplay
between numerous factors, including proteins, nucleic acids and small

Computational and Structural Biotechnology Journal 11 (2014) 1–10

⁎ Corresponding author. Tel.: +27 21 4066058.
E-mail addresses: Nicola.mulder@uct.ac.za (N.J. Mulder), roakinola@gmail.com

(R.O. Akinola), gmazandu@cbio.uct.ac.za (G.K. Mazandu), holy@aims.ac.za (H. Rapanoel).

http://dx.doi.org/10.1016/j.csbj.2014.08.006
2001-0370/© 2014 Mulder et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural Biotechnology. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

journa l homepage: www.e lsev ie r .com/ locate /csb j

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.csbj.2014.08.006
mailto:Nicola.mulder@uct.ac.za
mailto:roakinola@gmail.com
mailto:gmazandu@cbio.uct.ac.za
mailto:holy@aims.ac.za
http://dx.doi.org/10.1016/j.csbj.2014.08.006
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/18077
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2014.08.006&domain=pdf
www.elsevier.com/locate/csbj


molecules. These, in turn, are influenced by the environment and evolve
to enable adaptation to environmental niches. Bacterial pathogens have
evolved to infect their hosts through multiple mechanisms, including
horizontal gene transfer [1], mutations [2], gene duplications [3] and
gene loss [4]. In order to study infectious diseases caused by bacterial
pathogens, we need to improve our understanding of the underlying
molecular biology of these organisms so that we can determine how
they infect, persist and cause disease, as well as better understand the
pharmacokinetic and pharmacogenomic actions of anti-bacterial drugs.

The functioning of a biological system is largely driven by proteins,
which interact andwork together in pathways and processes. Therefore
to understand the system, proteins must be studied within the context
of their interactions with other proteins, rather than in isolation.
Proteins can interact through direct physical binding, or through indi-
rect associations, such as contributing to the same biological process.
Protein–protein interaction networks are probably the most used
example of biological networks, and can include interactions from
both physical protein–protein binding as well as other functional
interactions [5]. The vast amount of data generated over the years by
different high-throughput biological technologies has raised the need
for an integrative approachwhere datasets fromheterogeneous sources
aremerged into a single network of interactingproteins. In these biolog-
ical networks, the nodes are proteins and the edges represent functional
interactions between proteins which can be derived from a variety of
different data sources [6]. These sources include direct physical binding,
for which there are a number of protein–protein interaction databases
(e.g. IntAct, DIP, BIND), co-expression, functional similarity, text-
mining, co-localization and other functional genomics data sources [6].

Biological networks provide the starting point for a number of
analyses that aim to improve our understanding of biological systems
[7]. Since biological networks are depicted as network graphs, many
of these analysis tools draw on concepts and algorithms from graph
theory. These allow us to, for example, determine the properties of
nodes, such as their degree (number of neighbours), betweenness and
centrality, which provide a feeling of how important that node is in
facilitating communication between other nodes in the network and
in holding connected components of the network together. We can
also perform in silico knock-out studies to determine the potential
impact of targeting a particular protein. Identifying the essentiality of
proteins and the effect of knocking out the protein in the biological
network of a pathogen has the potential to enable in silico prediction
of potential drug targets when studying infectious diseases. There are
many other applications of biological networks, and in this article we
review some of these applications in studying human pathogens,
using examples from our work on Mycobacterium tuberculosis and
relatedmycobacteria.M. tuberculosis is the causative agent of tuberculo-
sis (TB), an infectious disease of epidemic proportions in developing
countries. First we review the use of protein–protein functional interac-
tion (PPI) networks for protein function prediction (note, functional
interactions include all functional connections between proteins, not
only physical binding), and then we demonstrate how networks can
facilitate evolutionary studies between pathogenic and non-pathogenic
strains with differing genome sizes by comparing three different net-
works. Finally, we review somemethods for generating host–pathogen
interaction networks to improve our understanding of the interplay
between host and pathogen during infection, not only using the
M. tuberculosis–human interaction network as an example but also
providing use cases from other host–pathogen studies.

2. Use of biological networks for function prediction

The completion of several sequencing projects and other high-
throughput biological technologies has generated complete genome
sequences and functional genomics data for several organisms. The
abundance of these diverse biological data from various sources consti-
tutes a rich source of knowledge, providing valuable insights into the

dynamics driving collective and specific features of these organisms,
and shedding light on the targeted organism's biology. Despite the
uncontested successes recorded from comparative and functional
genomics in gaining a better understanding of these organisms' biology
and evolution, a number of challenges still remain. One of the main
challenges is the lack of functional annotations for a relatively high
proportion of genes and thus proteins within genomes. From 20 to
50% of genes within a genome are still annotated as ‘unknown’,
‘uncharacterized’ or ‘hypothetical’, and this limits our ability to exploit
these data [8], leading to the paradigm of “a world which is data rich
yet information poor”. M. tuberculosis contains a large number of
“uncharacterised” or “hypothetical” proteins, which limits our ability
both to understand their role in thepathogenesis of TB and to determine
their potential as drug targets.

Proteins perform an astonishing range of biological functions in an
organism, including roles as structural proteins, as enzymes and for
the transportation of materials within and between cells. Each protein
is a gene product that interacts with the cellular environment in
some way to promote the cell's growth and function, implying that
knowledge of protein functions and their biological pathways is crucial
for understanding an organism's behaviour. Thus, one of themajor tasks
in the post-genomic era is genome annotation, or assigning functions to
gene products in order to capitalize on the knowledge gained through
different biological data produced. This requires a systematic descrip-
tion of the attributes of genes and proteins without any ambiguity
using a standardized syntax and semantics in a format that is human
readable and understandable, as well as interpretable computationally
[9]. One of the biggest accomplishments in this area is the creation of
the Gene Ontology (GO), which currently serves as the dominant and
most popular functional classification scheme for annotation and func-
tional representation of genes and their products [10].

The initial computational approach for assigning functions to an
uncharacterized protein uses sequence similarity search tools, such as
the Basic Local Alignment Search Tool (BLAST) [11]. This approach is
referred to as homology-based annotation transfer, providing a straight-
forward scheme for suggesting possible functions for uncharacterized
proteins. The key assumption driving this approach is that two proteins
with significantly similar sequences are evolutionarily linked and
might thus share common functions. However, some factors limit its ap-
plicability; for example, no known sequencemay be similar to the novel
protein sequence in the database, and above all, themost significant da-
tabase hit may perform a different function due to gene duplication
events [12,13], domain shuffling events (deletions), or single point mu-
tations [14]. Several approaches that do not rely directly on sequence
similarity have also been implemented, which include using informa-
tion about gene fusions, phylogenetic profiles of protein families, gene
adjacency in genomes and expression patterns [15]. Below we describe
the concept of and algorithms for function prediction and the use of GO
and biological networks to achieve this.

2.1. Protein function and Gene Ontology

From a mathematical point of view, transference of a functional
label from a set A to a set B is a rule which associates each object
(input) ‘x’ in A with at most one object (output) ‘y’ in B. In this case,
‘y’ represents the realization of ‘x’, called a function of ‘x’. For a function
to be well-defined one needs to know the two sets A and B and the rule
of associations of objects or realizations of all objects of A. Without loss
of generality, a set is a collection of well-defined objects, and if A and B
are well described, then a function is completely determined by know-
ing just the realizations of objects. Similarly, assuming the context and
the scope of interest are known, protein function is a concept used to
describe all types of realizations or activities to which the protein con-
tributes, which take place within an organism, and which have conse-
quences at the cellular and system levels [16]. Thus, the concept
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