
Mini Review

Computational approaches to metabolic engineering utilizing systems
biology and synthetic biology

Stephen S. Fong ⁎
Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main St., Richmond, VA 23284, United States

a b s t r a c ta r t i c l e i n f o

Available online 27 August 2014

Keywords:
Metabolic engineering
Genome-scale modeling
Synthetic biology
Computational design
Biotechnology

Metabolic engineeringmodifies cellular function to address various biochemical applications. Underlyingmetabol-
ic engineering efforts are a host of tools and knowledge that are integrated to enable successful outcomes. Concur-
rent development of computational and experimental tools has enabled different approaches to metabolic
engineering. One approach is to leverage knowledge and computational tools to prospectively predict designs to
achieve the desired outcome. An alternative approach is to utilize combinatorial experimental tools to empirically
explore the range of cellular function and to screen for desired traits. This mini-review focuses on computational
systems biology and synthetic biology tools that can be used in combination for prospective in silico strain design.
© 2014 Fong. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural

Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

One of the central challenges to biology is understanding biological
information flow such as how genotypes manifest into functional phe-
notypes. Historically, biological experiments have been difficult to con-
duct leading to a scarcity of data. However, technological improvements
in experimental high-throughput measurements have shifted biology
to being a data-rich field, driving a need for analytical tools to facilitate
the analysis and interpretation of biological data.

Metabolic engineering applies biological information to genetically
modify cellular function, usually toward production of a targeted chem-
ical or protein product. Metabolic engineering research requires knowl-
edge of integrated cellular function andmolecular detail to be successful.
Broadly, there are two types of approaches that lead to successful meta-
bolic engineering results: directed designs built upon knowledge or

combinatorial screening that leverages high-throughput experimental
techniques. Within the past fifteen years, computational tools have
been developed to leverage biological data in the analysis and design
of microbial strains for metabolic engineering and have facilitated
prospective metabolic engineering design. These tools began with
genome-scale metabolic models that aid in the analysis and prediction
of whole cell function and have expanded to include tools for predicting
the function of specific DNA sequences.

Here, a brief overview is presented on the development and progres-
sion of computational tools that can be applied tometabolic engineering.
Individual fields of systems biology, synthetic biology, computational
biology, or metabolic engineering are expansive enough for multiple
reviews. The specific focus of this mini-review is to focus on a subset of
tools from systems biology and synthetic biology that can be used in
combination to enable prospective in silico strain design. Key develop-
ments associated with genome-scale metabolic models and algorithms
that can be used to computationally propose microbial strain design
will be discussed. Specific developments in synthetic biology associated
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with transcriptional and translational control will also be presented and
placed within the context of genome-scale modeling and metabolic
engineering.

2. Main Text

Systems biology emphasizes data-intensive, integrative analyses
that account for extended network function. With the introduction of
whole genome sequencing and genomics technologies, one of the first
objectiveswas to developmethods utilizing genomic information to un-
derstand and predict phenotypic function. The constraint-basedmodel-
ing approach [1] was implemented to generate genome-scalemetabolic
models of some of the first organisms with genome sequences [2–4],
demonstrating the conceptual value of this computational approach.
The initial genome-scale models were constructed based upon genomic
data (sequence information) and biochemical data (reaction stoichiom-
etry) in conjunction with linear programming to apply mass balancing
principles to a whole-cell system. The conceptual framework provided
a context for analyzing attributes of a cellular system [5] and was
shown to be able to predict cellular growth phenotypes [6,7].

Since the initial development of genome-scale models, a wide variety
of improvements have beenmade to address different needs. These range
from understanding the underlying structure of networks by using ele-
mentarymodes [8] or extreme pathways [9], model-building approaches
[10,11], and progressivelymore cellular detail including thermodynamics
[12], transcriptional regulation [13,14], and signaling pathways [15]. All of
these have contributed to improve the predictive capability and accuracy
of genome-scale metabolic models and can be used to study a variety of
aspects of cellular systems. Here, we are specifically going to focus on
the existing tools and challenges associatedwith genome-scalemetabolic
models, particularly as they apply to metabolic engineering applications.
An overview of computational tools presented here is shown in Table 1,
which only represents a select subset of the numerous available tools
and algorithms that have been developed. A more comprehensive
(and continually updated) list of tools associated with constraint-based
models is curated online (cobramethods.wikidot.com).

2.1. Genome-scale Models and Metabolic Engineering

Using the natural ability of genome-scalemetabolic models to simu-
late the behavior of cellularmetabolism one can predict cellular designs
for maximizing chemical production. Metabolic engineering goals of
identifying and modifying pathway fluxes to optimize the production
of a desired chemical product align well with the pathway-level predic-
tions that are generated from a genome-scalemodel. The foundation for
this work was demonstrated when it was shown that the constraint-
based modeling approach could reasonably predict the cellular growth
phenotypes resulting from genetic modifications (gene deletions) [16]

in Escherichia coli. This quickly led to a demonstration of using a
genome-scale model of E. coli to predict strain designs for the over-
production of lactic acid [17], which set the stage for genome-scale
models as powerful computational tools for strain design.

The first iterations of combining computer-aided strain design with
experimental implementation relied on strain designs that incorporated
gene deletions. This approach was computationally achievable through
the removal of pathways associated with genes (following gene–pro-
tein–reaction relationships) and could be achieved experimentally
with established methods for targeted gene deletions using homolo-
gous recombination [18]. Initial results were promising from the stand-
point that the designs improved overall production of the desired
chemical, but there was still a quantitative mismatch between the com-
putationally calculated theoretical yield and the experimental yield.

The discrepancy between computationally predicted function
and actual function led to the development of an algorithm to predict
targets for iterative improvement of the experimental strain [19]. By
utilizing transcriptomic data of the experimental strain, algorithmic
analysis predicted areas of metabolism with the largest difference
between the theoretical and experimental function. This analysis pre-
dicted specific genes to be targeted for synthetic regulation of gene ex-
pression (increased or decreased expression). The problem remained in
connecting the computational prediction with tools for direct experi-
mental implementation. Recently, several developments have occurred
in parallel both computationally and experimentally.

For constraint-based genome-scale metabolic models, new method-
ologies and analyses continue to be developed that improve the accuracy
of these models to predict cellular phenotypes. One major consideration
for genome-scale metabolic models is that themathematical representa-
tion for a biological system is underdetermined and thus, the same cellu-
lar phenotype can be reproduced from different underlying flux states/
pathway usage. This problem complicates metabolic engineering design.
For example, a normal growth phenotypemay have numerous proposed
flux states that vary in specific pathway use, but produce the same cellu-
lar growth rate/product yield. However, once genetic modification of the
network is implemented, all of the possible flux states may no longer be
functionally equivalent. When considering growth phenotypes at the
level of cellular growth, it may not be necessary to explicitly identify
the exact flux state of the cell. Knowledge of the starting in vivo flux
state is important for pathway-specific metabolic engineering design.

The problem of identifying in vivo flux states within the context of
genome-scale metabolic models has been approached using a combina-
tion of high-throughput experimental data and computational algo-
rithms. The initial formulation of this approach used transcriptomic
or proteomic data with a human metabolic model to identify tissue-
specific metabolic differences [20]. In this approach, the experimental
data was translated to a binary present/absent scoring for each individual
transcript/protein. The scored experimental datawas thenalgorithmically

Table 1
Overview of computational tools discussed.

Tool Description Reference

OMNI Reconciles discrepancies between in silico and in vivo phenotypes using transcriptomics [19]
MILP Refined flux state predictions based upon high-throughput experimental data [20]
E matrix Prediction of gene and protein expression levels [25]
DFBA Dynamic flux balance analysis [27]
OptCom Multi-level optimization for modeling microbial consortia [30]
d-OptCom Dynamic variant of OptCom [31]
OptKnock Bi-level optimization for strain design using gene deletions [32]
EMILiO Strain design incorporating increased/decreased gene expression [37]
CosMos Flux-based strain design [38]
CASOP Strain design using elementary modes [39]
FBrAtio Strain design based upon flux ratios at critical nodes [40]
k-OptForce Strain design incorporating substrate-level inhibition [41]
DySScO Strain design incorporating process kinetics [42]
PWM Prediction of DNA sequence variation on promoter strength [48]
RBS calculator Prediction of protein translation initiation rates [50]
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