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Several computational methods have been developed that integrate transcriptomic data with genome-scale
metabolic reconstructions to infer condition-specific system-wide intracellular metabolic flux distributions. In
this mini-review, we describe each of these methods published to date with categorizing them based on four
different grouping criteria (requirement formultiple gene expression datasets as input, requirement for a thresh-
old to define a gene's high and low expression, requirement for a priori assumption of an appropriate objective
function, and validation of predicted fluxes directly against measured intracellular fluxes). Then, we recommend
which group of methods would be more suitable from a practical perspective.
© 2014 Kim and Lun. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Intracellular metabolic reactions provide a cell with basic biochemical
building blocks, energy, and a thermodynamically favorable environment
to sustain its life. Because of the large connectivity inherent to metabolic
networks via metabolites participating in multiple metabolic reactions,
determination of system-level changes in intracellular metabolic
fluxes of organisms is important for understanding the fundamental
mechanisms of their metabolic responses to environmental or genetic
perturbations [1,2].

13C metabolic flux analysis (13C-MFA) allows intracellular fluxes
to be quantified experimentally. In this approach, cells are grown on
13C-labeled substrates until the cells are at both metabolic steady state
(i.e. when concentrations of metabolites remain stable over time) and

isotopic steady state (i.e. when the isotope label is distributed through-
out the network, and all isotopomer fractions are constant over time).
Then the level of 13C enrichment in metabolites of the cells is measured
by mass spectrometry (MS) or nuclear magnetic resonance (NMR).
Intracellular flux distribution is reconstituted from the 13C enrichment
patterns [3–8]. System-wide quantification of intracellular metabolic
fluxes using 13C-MFA, however, is challenging not only because of the
extensive instrumentation required but also because of the limited
number of fluxes and conditions that can be experimentally measured.
Typically, 13C-MFA focuses on central carbon metabolism [7–10].

An alternativemethod that is widely used for system-level studies of
metabolism is a computational modeling approach called flux balance
analysis (FBA). FBA predicts metabolic flux distributions at steady
state by making use of in silico genome-scale metabolic models [11].
These genome-scale metabolic models are assembled and manually-
curated from annotated genome, biochemical, genetic, and cell pheno-
type data [11–13]. To use FBA, a genome-scale metabolic model is
converted into a m × n stoichiometric matrix, S, where the rows in S
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correspond to the m metabolites of the metabolic network, and the
columns represent the n reactions (Fig. 1a). Each matrix element sij,
indicates a stoichiometric coefficient, that is, the number of molecules
of the ith metabolite participating in the jth reaction. sij = 0 means
that the ith metabolite is not involved, and a positive or a negative sij
indicates that the ith metabolite is a product or a reactant of the jth re-
action, respectively. Under the steady state assumption, the metabolic
flux distribution can be represented mathematically by S·v = 0,
where v is a column vector whose elements are the unknown reaction
rates (fluxes) through each of the reactions of S (Fig. 1b). Since
genome-scalemetabolicmodels include all possiblemetabolic reactions
implied by the genome annotation regardless of whether the annotated
metabolic genes are expressed in a given environment, the resulting
system S·v=0, is in general underdetermined [14,15]. Thus, physiolog-
ically meaningful flux solutions need to be narrowed down from all the
possible flux distributions by imposing additional constraints on the
system and by optimizing certain objective functions when performing
FBA (Fig. 1c) [16]. The standard FBA involves solving the following lin-
ear optimization problem:

max f 0v

subject to Sv ¼ 0
lb≤v≤ub

� ð1Þ

where v is a flux vector representing the reaction rates of the n reactions
in the network, f is a coefficient vector defining the organism's objective
function, S is the stoichiometric matrix, and lb and ub are theminimum
and maximum reaction rates through each reaction in v.

If the complete regulatory structure of an organism were known, it
would be possible to produce context-specific constraints by computing
which cellular components may be expressed in a given condition.

However, the regulatory structure is unknown even for the relatively
simple and extensively-studied bacterium, Escherichia coli, partly due
to the lack of comprehensive transcription unit information andbecause
of the lack of information on the relationship between genotype and
phenotype [17].

Recent advances in omics technologies have enabled quantitative
monitoring of the abundance of biological molecules at various levels
in a high-throughput manner [18]. In the absence of complete informa-
tion on regulatory rules, omics data can be integrated with genome-
scale metabolic models to improve their predictive power [19,20]. For
this purpose, transcriptomic data, i.e. genome-wide mRNA expression
profiling data, is useful in some points compared to other omics plat-
forms. Fluxomics (i.e. 13C-MFA) is themost directmeasurement ofmet-
abolic phenotype, but has the disadvantages in that it is difficult tomake
measurements and only a limited number of fluxes can be determined
as mentioned above. Metabolomics can also be useful, but typically
fluxes are more informative than metabolite concentrations them-
selves, and it is challenging to determine fluxes from metabolite
concentrations partly because each metabolite participates in multiple
metabolic reactions. Similar to fluxes, specific classes of metabolites
such as lipids or labile chemicals easily metabolized are still demanding
to measure [21,22]. Unlike the first two omics data that cover a small
share of all reactions in a genome-scalemodel, transcriptomics and pro-
teomics are the platforms where a quantitative snapshot of molecular
species at system-level is currently possible [23]. However, proteomics
is a relatively immature technology compared to transcriptomics. The
accuracy with which protein concentrations can be determined is
much lower than that with which mRNA concentrations can be deter-
mined. On the other hand, RNA amount changes can be precisely mea-
sured in a highly automated process at low cost in comparison with the
amount of data gathered [24,25]. By integrating transcriptomics data

Fig. 1. Flux balance analysis (FBA). This figure illustrates how FBA works with an example of the simple network below consisting of two metabolites, A and B, and three metabolic
reactions. (a) To use FBA, the network is converted into a stoichiometricmatrix, S, where the rows in S correspond to themetabolites of themetabolic network, and the columns represent
the reactions. Eachmatrix element sij, indicates a stoichiometric coefficient, that is, the number of molecules of the ithmetabolite participating in the jth reaction. sij=0means that the ith
metabolite is not involved, and a positive or a negative sij indicates that the ithmetabolite is a product or a reactant of the jth reaction, respectively. (b) Under the steady state assumption,
the metabolic flux distribution can be represented mathematically by S·v= 0, where v is a column vector whose elements are the unknown reaction rates (fluxes) through each of the
reactions of S.(c) Since the resulting system, S·v = 0, is usually underdetermined, physiologically meaningful flux solutions need to be narrowed down from all the possible flux
distributions by imposing additional constraints on the system (e.g. 0 ≤ v ≤ 2 in the figure) and by optimizing certain objective functions (e.g. Max v3 in the figure).
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