
 

  

 

 

 

 

 

 

 

 
Introduction 
 

In computer analysis of chemical compounds, chemical structures 
are usually represented as graph structured data. Mathematically, a 
graph consists of a set of vertices and a set of edges, where a vertex 
represents some object and an edge represents a relation between two 
objects. From a chemical viewpoint, a graph corresponds to a 
chemical structural formula, in which a vertex and an edge correspond 
to an atom and a chemical bond, respectively. Furthermore, an atom 
type and a bond type are represented by labels of a vertex and an edge, 
respectively. In this article, graphs with such labels are called chemical 
graphs. 

Graphs are a very important concept in computer science, and 
extensive studies have been done to develop efficient algorithms for a 
number of graph problems. Among these problems, we focus on 
fundamental problems relevant to chemical graphs. In particular, we 
consider comparison and enumeration of chemical graphs because 
these are fundamental and have a long history in chemoinformatics. 
For example, unique naming of chemical compounds and enumeration 
of isomers have been studied for more than 100 years [1], much 
before the invention of computers. In this article, we consider the 
following problems: 

 
(i) determining whether two chemical graphs are identical, 
(ii) determining whether one input chemical graph is a part of the 

other input chemical graph, 
(iii) finding a maximum common part of two input graphs, 
(iv) finding a reaction atom mapping, 
(v) enumerating possible chemical graphs, 
(vi) enumerating stereoisomers, 
 
 
 
 
 
 
 

 
 

 
  

 

where (i) and (v) are closely related to unique naming and 
enumeration of structural isomers, respectively. We do not intend to 
provide a comprehensive review on these problems because there are 
too many methods even for any of these six problems. Instead, we try 
to clarify the computational complexities of them. We also introduce 
some recent developments on problems (v) and (vi) with focusing on 
our recent work because our algorithms are based on somewhat 
different approaches than traditional approaches in chemoinformatics 
[2] and they have guaranteed computational complexities. Since this 
review article focuses on time complexity aspects of the problems and 
algorithms, readers interested in practical and heuristic methods in 
chemoinformatics are referred to existing books and review articles: 
[2] for fundamental algorithms, [3,4] for pattern matching 
algorithms,  [2,5,6] for prediction and regression methods, and [2,7] 
for enumeration algorithms. 

As discussed later, most of the above problems are intractable for 
general graphs from a viewpoint of computational complexity. 
However, chemical graphs have several restrictions. For example, the 
maximum number of bonds connecting to an atom is usually less than 
8. Making use of these constraints, it is often possible to develop 
theoretically efficient algorithms. Therefore, before discussing 
individual problems, we briefly review graph classes that are relevant 
to chemoinformatics. 

The organization of this article is as follows. First, we review 
graph classes relevant to chemoinformatics and give a brief 
introduction of computational complexity. Next, we review 
theoretical results and some algorithms on problems (i)-(iv). Next, we 
describe a relationship between kernel methods and enumeration 
problems, where kernel methods are a kind of machine learning 
method and have been applied to various chemoinformatics problems. 
Then, we review our recent algorithms for problems (v) and (vi) 
because they are based on state-of-the-art techniques in graph 
algorithms and thus may bring new methodologies into 
chemoinformatics. Finally, we conclude with future work. For the 
purpose of simplicity of presentation, we do not give formal 
definitions, instead explain terms and results by using words and 
figures. 
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Graphs and chemical compounds 
 

A graph consists of a set of vertices and a set of edges, where a 
vertex and an edge correspond to an atom and a chemical bond, 
respectively. Each graph is denoted as G(V,E) where V denotes a set 
of vertices and E denotes a set of edges. There are two kinds of 
graphs: directed graphs and undirected graphs. Each edge has a 
direction in directed graphs, whereas no edge has a direction in 
undirected graphs. Since there is usually no explicit direction in 
chemical bonds, we only consider undirected graphs in this article and 
thus each edge is represented by a set of two vertices (i.e., two atoms 
connected by the corresponding chemical bond). 

In order to associate chemical structures to graphs, we employ 
labels of vertices and edges. Each vertex v has a label l(v), which 
represents an atom type (e.g., l(v)=`C' if v corresponds to a carbon 
atom). In this article, a graph with vertex and edge labels defined as 
above is called a chemical graph. There are two ways to represent a 
chemical bond with multiplicity: 

 
(i) multiplicity is represented by multi-edges (e.g., double bond is 
represented by two edges), 
(ii) multiplicity is represented by a label of an edge (e.g., l(e)=2 if an 

edge e corresponds a double bond). 
 

We mainly consider the latter way of representing chemical bonds 
in this article, where l(e)=1.5 may represent an aromatic bond. The 
degree of a vertex is defined as the number of edges connecting to it, 
and is closely related to the valence of an atom. A graph with a 
designated vertex r is called a graph rooted at a vertex r. Isomorphism 
between two rooted graphs assumes that the roots of the two graphs 
correspond each other. In this paper, we utilize a fast algorithm 
designed for enumerating rooted trees. However, we designate as the 
root of a tree a special vertex of the tree which is uniquely determined 
by the topological structure only, and thereby our algorithms 
effectively enumerate ``unrooted” trees. 
 

As mentioned above, chemical structures can be represented as 
graphs. However, we need not consider all kinds of graphs. For 
example, it is known that most atoms have valence at most 8, which 
implies that the maximum degree of chemical graphs is at most 8. 
Therefore, it is enough for chemical structures to consider graphs 
with bounded degree. In what follows, we only consider bounded 
degree graphs. 

As discussed later, many graph problems can be solved much 
faster if we restrict types of graphs. Therefore, we review here several 
graph classes that are relevant to chemical applications (see Figure 1). 
For details of graph classes, see [8]. 

Tree: A graph is called a tree if it is connected and does not have a 
loop, where `connected' means that there exists a path (a sequence of 
connected edges) connecting any pair of vertices. Trees are one of the 
simplest graphs and many problems can be solved much more 
efficiently for trees than for general graphs. 

Outerplanar graph: A graph is called outerplanar if it can be 
drawn on a plane in such a way that all vertices lie on the outer face 
without crossing of edges, where the outer face is the unbounded 
exterior region. Trees are a subclass of outerplanar graphs. 

Almost tree: A graph is called an almost tree (with parameter k) if 
each biconnected component (i.e., maximal non-tree part) is obtained 
by adding at most k edges to a tree. Trees are a subclass of almost 

trees (i.e., k=0). However, outerplanar graphs are not a subclass of 
almost trees or almost trees are not a subclass of outerplanar graphs. 

Partial k-tree: A graph is called a partial k-tree if it is transformed 
into a tree by regarding a family of subsets of vertices as a set of new 
vertices (i.e., by tree decomposition), where each subset consists of at 
most k+1 vertices (Figure 2). Trees, outerplanar graphs, and almost 
trees with parameter k are subclasses of partial 1-trees, partial 2-trees, 
and partial k+1-trees, respectively [9]. 

 

 
 
  
 
 

 
Yamaguchi et al. studied the distribution of partial k-trees in 

chemical graphs [10]. Horváth and Ramon also studied the 
distribution of partial k-trees in some dataset and reported that 
8.77%, 97.35% and 99.97% of compounds are partial 1-trees, 2-
trees, and 3-trees, respectively and most partial 2-tree compounds are 
outerplanar [11]. 
 

Here, we briefly review some basic concepts in computational 
complexity. If the computation time of an algorithm is proportional 
to nd (i.e., the computation time is O(nd)) for some constant d where 
n denotes the size of an input data, the algorithm is said to be a 
polynomial-time algorithm. There exist many problems that do not 
have polynomial-time algorithms. Although we do not explain details, 
NP-hard problems are widely believed not to have polynomial-time 
algorithms. In theoretical computer science, polynomial-time 
algorithms are regarded as efficient algorithms whereas NP-hard 

Figure 1. Examples of (a) tree, (b) almost tree, and (c) outerplanar graph, 
where k=2 in (b). 
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