
 

  

 

 

 

 

 

 

 
 
 
 

 
1. Introduction 
 

Experimental design techniques are crucial in terms of time and 
cost efficiency as well as to minimize the number of animal 
experiments. Reliable testing strategies are essential, especially in the 
course of the REACH legislation,[1] which includes the requirement 
that every chemical compound produced in/or imported into the 
European Union in an amount of more than one ton, has to be 
registered regarding a number of endpoints. But the application of 
selecting a representative and descriptive sub-sample from the 
chemical space of interest, and using it for the calculation of 
prediction models, is not only limited to risk assessment within 
REACH.[2],[3],[4] Also tasks as large scale scanning of chemical 
databases,[5] QSAR modeling,[6] drug target evaluation[7] or other 
pharmaceutical applications require systematic approaches to select 
representative subsamples. 

The variety of concepts to address these problems in 
computational chemistry and QSAR modeling is widely spread,[8],[9] 
but most of them can be reduced to one of three basic ideas. Firstly, 
the selection of compounds with maximum dissimilarity, which is 
based on the theory that the most distinct compounds contain the 
most diverse information. This idea/theory is optimal for linear 
modeling. The D-Optimal criterion[10],[11],[12] and the Kennard-
Stone algorithm[13] belong to this group of approaches. Secondly, 
the similarity selection aims to find compounds with high 
representativeness for the whole collection of relevant compounds. 
Approaches referring to this concept, e.g. the most descriptive 
compound  selection  (MDC),[14]  usually  select  compounds  from 

  
 
 
 
 
 

 
 

 
  

 

densely populated regions of the chemical space. Thirdly and lastly is 
an approach that aims to cover the whole chemical space of interest. 
The full factorial design[15] and space filling designs[16] are 
examples thereof. Recently, approaches that utilized hierarchical or 
density based clustering techniques were proposed.[9],[17] In our last 
study[18] we presented the advantages of an adaptive approach that 
combines a dissimilarity selection with an iteratively refined 
representation of the chemical space, by taking into consideration the 
information about the analyzed property that accumulates in the 
experimental process. 

In QSAR modeling and chemoinformatics the focus within the 
evaluation of a novel approach is often exemplified on a particular 
dataset. Statistical evaluations, taking performance measures such as 
reliability and robustness of an approach into consideration are 
rare.[19] Due to chance correlations, this can result in misleading 
conclusions about the applicability of an approach. Furthermore 
stability, which is the ability of adapting small changes in a dataset, or 
to process structural outliers in a data collection, also needs to be 
taken into consideration. This is a quality criterion, which is as 
important as the performance itself. 

In this study we present DescRep, a stepwise adaptive approach 
combining an iteratively refined descriptor selection with a sampling 
based on the concept of representative compounds. We compare this 
approach to experimental design strategies, which are commonly used 
in chemistry. An evaluation pipeline was implemented and applied to 
an ensemble of randomly selected subsets of three datasets, each with 
an endpoint relevant for REACH.  We show that in comparison to 
the traditional approaches that select all compounds at the same time, 
DescRep performs significantly better. 

We exemplify the importance of a statistical evaluation by 
investigating the effects of small changes in the underlying dataset on 
both the composition of the selected compounds and the performance 
of the resulting model. Furthermore, the collected datasets are 
extended with concerted structural outliers, to evaluate their influence 
on the selection approaches and the resulting models. Our results 
indicate that stepwise approaches, DescRep in particular, contribute 
to stability and reliability in experimental design. 
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Abstract: The quality criteria for experimental design approaches in chemoinformatics are numerous. Not only the error 
performance of a model resulting from the selected compounds is of importance, but also reliability, consistency, stability and 
robustness against small variations in the dataset or structurally diverse compounds. We developed a new stepwise, adaptive 
approach, DescRep, combining an iteratively refined descriptor selection with a sampling based on the putatively most 
representative compounds. A comparison of the proposed strategy was based on statistical performance of models derived from 
such a selection to those derived by other popular and frequently used approaches, such as the Kennard-Stone algorithm or the 
most descriptive compound selection. We used three datasets to carry out a statistical evaluation of the performance, reliability and 
robustness of the resulting models. Our results indicate that stepwise and adaptive approaches have a better adaptability to changes 
within a dataset and that this adaptability results in a better error performance and stability of the resulting models. 
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We investigate the benefits of a representation of the chemical 

space, which takes the correlation to the target property into 
consideration, and consequently arranges the compounds to a certain 
reference endpoint. Finally, we analyze our results with respect to the 
variability and adaptability of the examined approaches. 

 
2. Materials and Methods 
 

 
To compare and evaluate the selection approaches, we collected 

three datasets, which vary in several criteria. The respective endpoints 
of these datasets, which were also used in our previous study,[18] 
were a physicochemical property, boiling point, a soil sorption 
coefficient, logKOC, and environmental aquatic toxicity against 
freshwater fish fathead minnow. 

We extracted a collection of boiling point values from the 
Estimation Programs Interface (EPI) suite data.[20] The compounds 
within the dataset were restricted to halogenated compounds, 
containing bromine, chlorine and/or fluorine. As no further structural 
filters were applied, this set still provided a broad diversity regarding 
molecule size and chemical structures. We did not apply any kind of 
structural filter to the other datasets. The second dataset was based on 
the collection of logKOC values by Meylan et al.[21] logKOC is the log 
scale of the adsorption coefficient of a contaminant in the organic 
fraction of the soil. The endpoint for the toxicity dataset was the log 
scaled aquatic LC50 value on the fathead minnow. The measurements 
were taken from the fathead minnow acute toxicity database[22] of 
the Environment Protection Agency (EPA). 

All datasets were free of duplicate compounds. Measurements 
providing intervals of minimum or maximum values were excluded. In 
order to avoid problems in descriptor calculation, inorganic 
compounds, radicals, charged molecules and salts were filtered out. 
The final dataset for the boiling point contained 1198 compounds, 
the datasets for logKOC and for toxicity on the fathead minnow 
contained 648 and 535 chemicals, respectively. 

For each dataset, a collection of two types of descriptors was 
calculated. The first type was calculated using the ALOGPS 2.1 
program[23] and contained two descriptors: solubility and 
lipophilicity of molecules. ALOGPS was the top-ranked model for 
prediction of logP.[24] The second type included E-State 
indices.[25],[26] These are electrotopological descriptors calculated 
for each atom and each bond in a compound and then summed 
according to their types over all atoms. The number of descriptors for 
the second type is determined by number of different chemical groups 

and thus it was not a fixed one. On our datasets, we calculated 179, 
220 and 230 descriptors for logLC50, logKOC and the boiling point 
dataset, respectively. The Online CHEmical database and Modeling 
environment (OCHEM)[27] was used for the calculation of the 
descriptors. To represent the chemical space of each dataset the 
descriptors were normalized to a [0,1] range. The rationale to use 
normalization instead of standardization is that standardization works 
on the underlying assumption that the objects are normally 
distributed. This assumption is not true for descriptors determined 
for chemical groups, e.g., in particular for the E-State indices. As they 
are linked to the presence of certain substructures, for most 
compounds, their value is just zero. 

One of the aims of this study was to investigate the influence of 
structurally diverse compounds on the selection and accuracy of the 
resulting models. Therefore each of the three datasets was extended by 
the inclusion of a compound, which was characterized as a structural 
disrupter. We defined a structural disrupter as a data point that (a) 
influences the recalculated loadings of the first or the second principal 
component in such a manner that the principal properties represented 
by these components are changed and (b) results in one or more 
instances in the data set that are – according to the distribution of the 
instances in that principal component – at least five standard 
deviations from 97% of all other compounds. 

Structural outliers like the ones used in this study are not 
artificial, but can result from several reasons, e.g. (a) from few 
compounds within the dataset, which have a specific chemical group 
that is different from other compounds and functionally is not 
relevant, (b) from the choice of a specific descriptor set, or (c) from a 
certain procedure within the multivariate analysis (centering or not the 
data, usage of raw, normalized or standardized data). 

The structural outliers in our study were (a) ethyl 2-chloro-3-[2-
chloro-5-[4-(difluoromethyl)-3-methyl-5-oxo-1,2,4-triazol-1-yl]-4-
fluorophenyl]propanoate (carfentrazone-ethyl) for the boiling point 
dataset,  (b) (1R,4aR,4bS,7S,10aR)-7-ethenyl-1,4a,7-trimethyl-
3,4,4b,5,6,8,10,10a-octahydro-2H-phenanthrene-1-carboxylic acid 
(isopimaric acid) for the logLC50 dataset and (c) (1,2-dimethyl-3,5-
diphenyl-pyrazol-1-yl) methyl sulfate for the logKOC dataset. All these 
three compounds were retrieved from the same source as the rest of 
the respective dataset. Fig. 1a) shows the first two principal 
components of the boiling point dataset without outliers whereas Fig. 
1b) shows the first principal components of the same dataset with the 
structural disruptor. The structural disrupter has a red color. The 
principal components were derived from the whole set of normalized 
ALOGPS descriptors and E-State indices and thus no variable 
selection was performed. Furthermore, the data were not centered 
before the orthogonal transformation. 

Figure 1. The change in the principal components view due to one structural outlier in the dataset. The principal components were calculated for the dataset 
with (b, c) and without (a) structural outlier. ALOGPS and E-State indices were used (a, b), as well as DRAGON descriptors (c). The protocol to calculate the 
principal components was always the same. 
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