
 

  

 

 

 

 

 

 

 
1. Introduction 
 

Asymmetric aldol additions are a corner stone of preparative 
organic chemistry. Concomitant with the formation of a C-C bond 
between a nucleophile (donor) and an electrophile (acceptor) one or 
two new stereocenters are created. This type of reaction can also be 
carried out by enzymes, such as aldolases and transaldolases. Those 
enzymes, in most cases, strictly control the stereo configuration at the 
newly formed stereocenter(s). Aldolases are applied in biocatalysis for 
the synthesis of amino acid and carbohydrate derivatives. For more 
details about aldolases and their biocatalytic application see recent 
reviews [1-4]. 

Mechanistically, class I and class II aldolases are distinguished. 
Class I aldolases form a Schiff base intermediate between a conserved 
Lys in the active site and the carbonyl carbon atom of the donor 
substrate, i.e. usually a ketone. By proton abstraction an enamine 
intermediate is formed which attacks the carbonyl carbon atom of the 
acceptor aldehyde. Class I aldolases do not require any cofactor and 

they exhibit a typical (β/α)8-barrel fold. Class II aldolases depend on 
a divalent cation which acts as a Lewis acid. The metal ion helps to 
deprotonate the donor substrate and stabilises the enolate formed. 
Therefore, these aldolases can be inhibited by EDTA. According to 
their structure and sequence class I and class II aldolases do not show 
any significant homology. Apparently, they evolved separately. 

Aldolases usually accept a wide range of acceptor substrates which 
allows a broad range of synthetic applications. On the other hand, 
they are in general very specific for their donor substrate. Hence, they 
are classified as (i) dihydroxyacetone phosphate (DHAP) dependent 
aldolases, (ii) dihydroxyacetone (DHA) dependent aldolases, (iii) 
pyruvate/2-oxobutyrate dependent aldolases, (iv) acetaldehyde 
dependent aldolases and (v) glycine/alanine dependent aldolases [1]. 
Glycine/alanine dependent aldolases are neither class I nor class II 
aldolase but require pyridoxal phosphate (PLP) as cofactor. 
Structurally, they belong to the fold type I family of PLP dependent 
enzymes. 
  

 
 
 
 
 

 
 

 

Transaldolases (Tal) transfer a DHA moiety from a ketose donor 
to an aldehyde acceptor. A new C-C bond is formed with 3S,4R 
stereo configuration. Mechanistically (Schiff base intermediate) and 

structurally ((β/α)8-barrel fold), Tals show similarity to class I 
aldolases. However, compared to DHAP dependent class I aldolases 

the conserved Lys residue moved to a different β-strand suggesting a 
circular permutation of the protein sequence [5]. Tals are almost 
ubiquitous enzymes and according to their sequence similarity they 
were divided into five subfamilies. The wild type enzyme did not find 
much application in biocatalysis. For more details on the Tal enzyme 
family see recent publications [6, 7]. 

Using computational tools protein engineering within this enzyme 
family was directed towards the following aims: (i) the discovery of 
new enzymes, (ii) the differentiation between enzyme families or 
subfamilies, (iii) the engineering of enzymes for new applications and 
(iv) the design of novel aldolases. In this mini-review we will first 
describe the different strategies for protein engineering and summarize 
the computational tools available. In the second part, we will give 
examples from the enzyme family of aldolases and transaldolases. 

 
2. Computational tools for protein engineering  

 
Isolated enzymes have been successfully applied for 

bioconversions provided the enzyme is stable, soluble, and easy to 
produce. However, in most cases the commercially available enzymes 
are not optimal for the desired chemical process. Therefore, in silico, 
in vitro, and in vivo strategies have been developed to screen for 
appropriate enzymes from the natural pool [8]. However, natural 
enzymes rarely have the combined properties necessary for industrial 
chemical production such as high activity, high selectivity, broad 
substrate specificity towards non-natural substrates, no inhibition by 
substrate or product, and a high stability in organic solvents and at 
high substrate or product concentrations [9]. Therefore, protein 
engineering has been successfully applied to design enzymes with new 
substrate spectra and new functions as catalysts for unnatural 
substrates, and to fine-tune bottleneck enzymes in metabolic 
engineering [10]. Three major computational strategies are currently 
applied to support protein engineering: directed evolution, methods to 
predict sequence-function relationships, and structure-based molecular 
modelling methods.  
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Directed evolution has proven to be an effective method to 
improve the properties of enzymes (for aldolases see review [11]). 
The unguided use of random mutagenesis methods, however, results 
in protein libraries with millions of members which still only sample a 
small fraction of the vast sequence space possible [12]. Recently, 
several computational approaches have been suggested to improve the 
efficiency of the directed evolution by enriching the library and 
reducing the library size substantially, taking into account further 
information. An enrichment of the library may be achieved by 
considering structure information on residues that are involved in 
substrate binding. This approach has guided the design of highly 
focused libraries and resulted in mutants with increased selectivity 
[13-15] or shifted substrate specificity [16-19]. The size of the 
library can be reduced by limiting  the possible amino acid alphabet, 
i.e. not all 20 amino acids but a subset is used instead, depending on 
the desired interactions [20]. To estimate the screening effort 
necessary the CASTER tool was developed by the Reetz group. A 
comprehensive statistical analysis of a large number of favourable and 
less favourable mutants identified hot spot regions that are beneficial 
to enzyme activity and stability [21-23]. Most of these methods to 
search for promising mutation sites require expert knowledge in 
bioinformatics which may not be present in experimentally oriented 
research groups. Therefore, online tools that require little to none 
bioinformatics knowledge have become popular. Meta-tools such as 
the HotSpot Wizard [24] offer a complete workflow to assess 
promising mutation sites by combining a variety of methods such as 
Catalytic Site Atlas [25], CASTp [26], CAVER [27], BLAST [28], 
MUSCLE [29], as well as sequence and structure databases such as 
UniProt [30], NCBI GenBank [31], and PDB [32]. 

 

The second strategy takes advantage of the rapidly growing 
amount of available protein sequences, structures, functional and 
biochemical data. Systematic analyses are based on large number of 
protein sequences and complete protein families to yield insights into 
catalytic mechanisms and evolutionary pathways [33]. By comparing 
the sequences of homologous proteins, consensus or ancestor 
sequences were constructed. Back-to-the-consensus mutations were 
shown to increase stability [34-36] or improve expression [37]. 
Recently, ancestral mutations have been integrated with directed 
evolution to generate a stabilized starting point of highly diverse and 
evolvable gene libraries [38]. Alternatively, multi-sequence alignments 
were analyzed to identify correlated mutations, to identify structurally 
or functionally relevant residues [39, 40], and to predict mutants with 
improved substrate specificity, catalytic activity, or protein stability 
[41]. Sequence-based methods were also applied to predict 
aggregation-prone regions [42] and to design mutants with decreased 
aggregation rates [43]. Multiple sequence alignments assisted by 
structural information were also used to identify subfamily specific 
positions in aldolases [44-46]. 

While the amount of information on sequence, structure, and 
biochemical information is steadily increasing, it is generally not 
available to a systematic analysis. Therefore, databases have been 
developed that provide access to enzymatic information such as 
BRENDA [47] or to integrate information on enzyme families such 
as DWARF [48] and 3DM [49]. BRENDA (BRaunschweig 
ENzyme DAtabase) offers a comprehensive collection of biochemical 
data on a broad range of enzyme families, which are grouped 
according to their EC numbers, providing information about reaction 
type, products, and substrates, organisms of origin, and an overview of 
available publications. The DWARF system (Data Warehouse system 

for Analyzing pRotein Families) integrates sequence, structure, and 
annotation information of large protein families including lipases 
[50], triterpene cyclases [51], thiamine-diphosphate dependent 
enzymes [52], and lactamases [53]. The 3DM system [54] is based 
on the creation of structure-based multiple sequence alignments. A 
common numbering scheme for structurally equivalent amino acids 
allows for the automated creation of homology models, the analysis of 
correlated or conserved residues and the prediction of functionally 
relevant residues [41, 55]. As of the time of this review, no database 
with a focus on aldolases has been published. 

 

The third strategy starts from information on protein structure 
and seeks to improve stability, activity, specificity, or selectivity by 
molecular modelling. While for a growing number of proteins, 
experimentally determined structure information become available by 
the Protein Data Bank [32], only for a small fraction of all proteins 
with known sequence the structure is also known. However, if 
sequence similarity is sufficiently high the structure of a protein can 
be modeled based on a sequence comparison to a protein with 
experimentally determined structure. Sequence identities as low as 
25% are usually enough to predict reliable structure models, in some 
cases even sequences with lower sequence identities are suitable for 
homology modeling [56]. Homology modeling programs such as 
Swiss-Model [57], Modeller [58] or Rosetta [59] are based on the 
observation that during evolution structure has been more conserved 
than sequence. Thus, proteins with similar sequence have a similar 
structure. Using these methods, structure models can be derived for 
the majority of soluble proteins as demonstrated by the biannual 
Critical Assessment of Protein Structure Prediction [60]. 

Many strategies for protein stabilization have been proposed: 
optimization of the distribution of surface charge–charge interactions 
[61, 62], improvement of core packing [63] and of the protein 
surface [64], and rigidification by introduction of prolines, exchange 
of glycines, introduction of disulfide bridges [65] or mutagenesis at 
positions with high B-factor [66]. However, it is still challenging to 
reliably predict mutations that stabilize the enzyme without affecting 
its activity or selectivity, which are a direct consequence of the 
molecular recognition of the substrate by the enzyme. For a change in 
stereoselectivity the side chains in vicinity of the stereocentre can be 
determined from structural data. These residues can then be split into 
sectors containing two to three residues which are randomized 
simultaneously [67, 68]. To improve activity and selectivity, 
modelling of the enzyme-substrate complex by molecular docking 
methods has been used to study the molecular basis of specificity and 
selectivity, and to predict mutations in the enzyme or modifications of 
the substrate structure that mediate specificity or selectivity [69-71]. 
It is recognized that shape and physico-chemical properties of the 
active site and the substrate binding site are the major driving forces 
to provide the specific interactions between enzyme and the transition 
state of the substrate that lead to catalysis. Moreover, there is 
increasing evidence that flexibility of the enzyme-substrate complex is 
crucial to recognition, because minor structural adjustments can have 
a big impact on the docking score [51]. Docking has been extensively 
used to predict substrate specificity and to identify positions that 
mediate substrate binding. Amino acids that clash with the desired 
substrate upon docking were exchanged, leading to an increase of 
catalytic activity of the enzyme variant toward this substrate [72-74]. 
Catalytic activity is mediated by only a small number of amino acids, 
metals, or cofactors located in the vicinity of the active site. However, 
substrate specificity and selectivity of an enzyme might be determined 
by factors beyond the geometric shape of the active site, such as long- 
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