

Fuel 87 (2008) 1014-1030

Review article

The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review

Constantine Arcoumanis a,*, Choongsik Bae b,1, Roy Crookes c,2, Eiji Kinoshita d,3

- ^a School of Engineering and Mathematical Sciences, The City University London, Northampton Square, London ECIV 0HB, United Kingdom
 ^b Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusong-Dong, Yusong-Gu,
 Taejon 305-701, Republic of Korea
 - ^c Department of Engineering, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom ^d Department of Mechanical Engineering, University of Kagoshima, 1-21-40 Korimoto, Kagoshima 890-0065, Japan

Received 30 January 2007; received in revised form 8 June 2007; accepted 14 June 2007 Available online 19 July 2007

Abstract

This paper reviews the properties and application of di-methyl ether (DME) as a candidate fuel for compression-ignition engines. DME is produced by the conversion of various feedstock such as natural gas, coal, oil residues and bio-mass. To determine the technical feasibility of DME, the review compares its key properties with those of diesel fuel that are relevant to this application. DME's diesel engine-compatible properties are its high cetane number and low auto-ignition temperature. In addition, its simple chemical structure and high oxygen content result in soot-free combustion in engines. Fuel injection of DME can be achieved through both conventional mechanical and current common-rail systems but requires slight modification of the standard system to prevent corrosion and overcome low lubricity. The spray characteristics of DME enable its application to compression-ignition engines despite some differences in its properties such as easier evaporation and lower density. Overall, the low particulate matter production of DME provides adequate justification for its consideration as a candidate fuel in compression-ignition engines. Recent research and development shows comparable output performance to a diesel fuel led engine but with lower particulate emissions. NO_x emissions from DME-fuelled engines can meet future regulations with high exhaust gas recirculation in combination with a lean NO_x trap. Although more development work has focused on medium or heavy-duty engines, this paper provides a comprehensive review of the technical feasibility of DME as a candidate fuel for environmentally-friendly compression-ignition engines independent of size or application.

Keywords: Di-methyl ether (DME); Compression-ignition engine; Diesel; Alternative fuel

Abbreviations: BSFC, brake specific fuel consumption; BTX, benzene, toluene and xylene; C–C, carbon-to-carbon; CFC's, chloro-fluoro-carbons; C:H, carbon-to-hydrogen ratio; C₂H₂, acetylene; C₂H₄, ethylene; C₃H₃, proparagyl; CH₄, methane; CH₂O, formaldehyde; CI, compression-ignition; CNG, compressed natural gas; CO₂, carbon dioxide; CO, carbon monoxide; CR, compression ratio; DI, direct-injection; DMC, di-methyl carbonate; DME, dimethyl ether; EGR, exhaust gas recirculation; FIE, fuel-injection equipment; H₂, hydrogen; HC, hydrocarbon; HCCI, homogeneous charge compression-ignition; HDV, heavy-duty vehicle; IMEP, indicated mean effective pressure; LDV, light-duty vehicle; LNT, lean NO_x trap; LPG, liquefied petroleum gas; NMHC, non-methane hydrocarbon; NO_x, nitrogen oxide; P_a, ambient pressure; P_{in}, fuel- injection pressure in common-rail; PAH, polycyclic aromatic hydrocarbon; PM, particulate matter; PTFE, polytetrafluoroethylene; SI, spark-ignition; SOF, soluble organic fraction; SO₂, sulfur dioxides; SPI, sustainable process index; syngas, synthetic gas; ULEV, ultra low emission vehicle.

Corresponding author. Tel.: +44 207 040 0113; fax: +44 207 040 8101.

E-mail addresses: c.arcoumanis@city.ac.uk (C. Arcoumanis), csbae@kaist.ac.kr (C. Bae), r.j.crookes@qmul.ac.uk (R. Crookes), kinoshit@mech. kagoshima-u.ac.jp (E. Kinoshita).

¹ Tel.: +82 42 869 3044; fax: +82 42 869 5044.

² Tel.: +44 207 882 5270; fax: +44 208 983 1007.

³ Tel.: +81 99 285 8268; fax: +81 99 250 3181.

Contents

1.	Introduction	1015
2.	DME properties.	1016
	2.1. Advantages	1016
	2.2. Disadvantages	1017
3.	Fuel specification and production	1017
	3.1. Fuel specification of DME	1017
	3.2. DME production	1017
4.	Fuel-injection system	1018
	4.1. Features of the fuel-injection system	1018
	4.2. Flow phenomena in the injector nozzle	1018
	4.3. DME fuel-injection system options	1019
	4.3.1. Common-rail system	1019
	4.4. A liquid DME fuel tank	1020
5.	Spray characteristics and combustion.	1020
	5.1. Spray characteristics	1020
	5.1.1. $P_a < \text{saturated vapour pressure of DME or low ambient pressure } (0.1 \text{ MPa}) [19,23,27] \dots$	1020
	5.1.2. Saturated vapour pressure of DME $\leq P_a \leq$ critical pressure of DME [10,11,27]	1021
	5.1.3. $P_a > \text{critical pressure of DME } [10,11] \dots$	1021
	5.2. Spray combustion of DME [26–29]	1021
	5.3. Numerical simulation of DME spray combustion	1021
6.	Engine performance and emissions	1022
	6.1. Exhaust emissions and fuel consumption	1022
	6.1.1. Particulate matter (PM)	1022
	6.1.2. NO _x	1023
	6.1.3. HC and CO	1024
	6.1.4. Combustion noise [3,15]	1025
	6.1.5. Non-regulated exhaust emissions	1025
	6.2. Effect of fuel-injection equipment (FIE) and combustion system parameters	1025
7.	Energy efficiency and well-to-wheels emissions	1026
	7.1. Well-to-wheels analysis	1026
	7.2. Assessment of emissions by the sustainable process index	1026
8.	New DME concept engine	1027
9.	Summary	1028
	·	1029

1. Introduction

Di-methyl ether (DME) is a liquified gas with handling characteristics similar to those of liquified petroleum gas (LPG) [1]. It can be produced from a variety of feed-stock such as natural gas, crude oil, residual oil, coal, waste products and bio-mass. Many investigations have been carried out on DME to determine its suitability for use as a fuel in diesel-cycle engines [1,2].

DME has the appearance of an excellent, efficient alternative fuel for use in a diesel engine, with almost smoke-free combustion. This is not only because of its low auto-ignition temperature and its almost instantaneous vapourization when injected into the cylinder, but also because of its high oxygen content (around 35% by mass) and the absence of C–C bonds in the molecular structure [1,2]. With a properly designed DME injection and combustion system, nitrogen oxides (NO_x) emissions can also meet ultra low emission vehicle (ULEV) limits [3]. The well-to-wheels energy efficiency of heavy- and light-duty

DME-fuelled vehicles is projected to be 22.5% and 19%, respectively [4]. This is comparable to LPG and compressed natural gas (CNG) fuelled vehicles but less than the highest energy efficiency of 26% in direct-injection (DI) diesel fuelled vehicles [4]. On the other hand, the well-to-wheels carbon dioxide (CO₂) emissions of a DME-fuelled vehicle is comparable to those using DI diesel or CNG fuelled engines [4]. However, an oxidation catalyst would be necessary to meet ULEV carbon monoxide (CO) and hydrocarbon (HC) emission limits [5].

DME was also found to be an excellent gas turbine fuel with emission properties comparable to natural gas [6]. DME-fuelled turbine also allows to achieve a significant performance improvement through thermochemical recuperation with 44% higher power output and an 8% decrease of the specific CO₂ emissions compared to the present plant [7]. However, DME is not a suitable fuel for spark-ignition (SI) engines due to its high cetane number, though the burning velocity is similar to hydrocarbon fuels [8]; the easily-induced knock would limit the operation of SI engines.

Download English Version:

https://daneshyari.com/en/article/208003

Download Persian Version:

https://daneshyari.com/article/208003

<u>Daneshyari.com</u>