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Abstract

In this study, the application of response surface methodology (RSM) and central composite rotatable design (CCRD) for modeling
the influence of some operating variables on the performance of a Multi-Gravity Separator (MGS) for coal cleaning was discussed. Four
operating variables of MGS, namely drum speed, tilt angle, wash water and feed solids were changed during the tests based on the
CCRD.

In order to produce clean coal with MGS, mathematical model equations were derived by computer simulation programming apply-
ing least squares method using MATLAB 7.1. These equations that are second-order response functions representing ash content and
combustible recovery of clean coal were expressed as functions of four operating parameters of MGS. Predicted values were found to be
in good agreement with experimental values (R2 values of 0.84 and 0.93 for ash content and combustible recovery of clean coal,
respectively).

This study has shown that the CCRD and RSM could efficiently be applied for the modeling of MGS for coal and it is economical
way of obtaining the maximum amount of information in a short period of time and with the fewest number of experiments.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The Multi-Gravity Separator (MGS) represents the lat-
est development in fine grain mineral concentration. The
parameters that affect the performance of MGS are the
drum speed, tilt angle, shakes amplitude, shakes frequency,
wash water and feed solids [1]. The success of concentra-
tion with MGS depends on the selection of suitable param-
eter levels and minerals. The optimization of these
parameters requires many tests. The total number of exper-
iments required can be reduced depending on the experi-
mental design technique [2].

Process engineers want to determine the levels of the
design parameters at which the response reaches its opti-
mum. The optimum could be either a maximum or a min-
imum of a function of the design parameters. One of the
methodologies for obtaining the optimum results is
response surface methodology (RSM) [3].

It is essential that an experimental design methodology
is very economical for extracting the maximum amount
of complex information, a significant experimental time
saving factor and moreover, it saves the material used for
analyses and personal costs [4].

The objective of this study was to establish the func-
tional relationships between the some operating parameters
of MGS, namely drum speed, tilt angle, wash water and
feed solid and, ash content and combustible recovery of
clean coal for Yenicubuk/Turkey lignite coal. In the
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following sections, the RSM and requirements for CCRD
and its applications for modeling the influence of some
operating variables on the performance of a MGS for coal
from Yenicubuk/Turkey lignite coal are discussed.

2. Response surface methodology (RSM)

RSM is a collection of statistical and mathematical
methods that are useful for the modeling and analyzing
engineering problems. In this technique, the main objective
is to optimize the response surface that is influenced by var-
ious process parameters. RSM also quantifies the relation-
ship between the controllable input parameters and the
obtained response surfaces [3].

The design procedure for the RSM is as follows [5]:

(i) Designing of a series of experiments for adequate and
reliable measurement of the response of interest.

(ii) Developing a mathematical model of the second-
order response surface with the best fittings.

(iii) Finding the optimal set of experimental parameters
that produce a maximum or minimum value of
response.

(iv) Representing the direct and interactive effects of pro-
cess parameters through two and three-dimensional
(3D) plots.

If all variables are assumed to be measurable, the
response surface can be expressed as follows:

y ¼ f ðx1; x2; x3; . . . ; xkÞ ð1Þ

where y is the answer of the system, and xi the variables of
action called factors.

The goal is to optimize the response variable (y). It is
assumed that the independent variables are continuous
and controllable by experiments with negligible errors. It
is required to find a suitable approximation for the true
functional relationship between independent variables
and the response surface [5].

3. Central composite rotatable design (CCRD)

The experimental design techniques commonly used for
process analysis and modeling are the full factorial, partial
factorial and central composite rotatable designs. A full
factorial design requires at least three levels per variable
to estimate the coefficients of the quadratic terms in the
response model. Thus for the four independent variables
81 experiments plus replications would have to be con-
ducted [6]. A partial factorial design requires fewer experi-
ments than the full factorial. However, the former is
particularly useful if certain variables are already known
to show no interaction [7,8].

An effective alternative to the factorial design is the cen-
tral composite rotatable design (CCRD), originally devel-
oped by Box and Wilson [6] and improved upon by Box
and Hunter [9]. The CCRD gives almost as much informa-

tion as a three-level factorial, requires much fewer tests
than the full factorial and has been shown to be sufficient
to describe the majority of steady-state process responses
[8,10,11].

The number of tests required for the CCRD includes the
standard 2k factorial with its origin at the center, 2k points
fixed axially at a distance, say b, from the center to gener-
ate the quadratic terms, and replicate tests at the center;
where k is the number of variables. The axial points are
chosen such that they allow rotatability [9], which ensures
that the variance of the model prediction is constant at
all, points equidistant from the design center. Replicates
of the test at the center are very important as they provide
an independent estimate of the experimental error. For
four variables, the recommended number of tests at the
center is six [9]. Hence the total number of tests required
for the four independent variables is 24 + (2 · 4) + 6 = 30
[8,9].

Once the desired ranges of values of the variables are
defined, they are coded to lie at ±1 for the factorial points,
0 for the center points and ±b for the axial points. The
codes are calculated as functions of the range of interest
of each factor as shown in Table 1.

When the response data are obtained from the test
work, a regression analysis is carried out to determine the
coefficients of the response model (b1,b2, . . . ,bn), their stan-
dard errors and significance. In addition to the constant
(b0) and error (e) terms, the response model incorporates
[8]:

• Linear terms in each of the variables (x1,x2, . . . ,xn).
• Squared terms in each of the variables ðx2

1; x
2
2; . . . ; x2

nÞ.
• First-order interaction terms for each paired combina-

tion (x1x2,x1x3, . . . ,xn�ixn).

Thus for the four variables under consideration, the
response model is

y ¼ ðb0 þ eÞ þ
X4

i¼1

bixi þ
X4

i¼1

biix2
i þ

X4

i¼1

X4

j¼iþ1

bijxixj ð2Þ

The b coefficients, which should be determined in the
second-order model, are obtained by the least squares
method. In general Eq. (2) can be written in matrix form

Y ¼ bX þ e ð3Þ

Table 1
Relationship between coded and actual values of a variable [12]

Code Actual value of variable

�b xmin

�1 [(xmax + xmin)/2] � [(xmax�xmin)/2a]
0 (xmax + xmin)/2
+1 [(xmax + xmin)/2] + [(xmax�xmin)/2a]
+b xmax

xmax and xmin = maximum and minimum values of x, respectively;
a = 2k/4; k = number of variables.
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