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Obtaining reliable in-silico foodmodels is fundamental for a better understanding of these systems. The complex
phenomena involved in these real-world processes reflect in the intricate structure ofmodels, so that thoroughly
exploring their behaviour and, for example, finding meaningful correlations between variables, become a rele-
vant challenge for the experts. In this paper, we present a methodology based on visualisation and evolutionary
computation to assist experts during model exploration. The proposed approach is tested on an established
model of milk gel structures, and we show how experts are eventually able to find a correlation between two
parameters, previously considered independent. Reverse-engineering the final outcome, the emergence of
such a pattern is proved byphysical laws underlying the oil–water interface colonisation. It is interesting tonotice
that, while the present work is focused onmilk gel modelling, the proposedmethodology can be straightforwardly
generalised to other complex physical phenomena.
Industrial relevance: Sustainability is nowadays at the heart of industrial requirements. The development of mathe-
matical approaches should facilitate common approaches to risk/benefit assessment and nutritional quality in food
research and industry. These models will enhance knowledge on process–structure–property relationships from
themolecular tomacroscopic level, and facilitate the creation of in-silico simulators with functional and nutritional
properties. The stochastic optimisation techniques (evolutionary algorithms) employed in these works allow the
users to thoroughly explore the systems: when coupled with visualisation, they make it possible to provide the
expertswith a restricted set of significant data, helping them to highlight eventual issues or possible improvements
in the model. With regard to the complexity of the food systems and dynamics, the challenge of the mathematical
approaches is to realise a complete dynamic description of foodprocessing. In order to reach this objective, it isman-
datory to use innovative strategies, exploiting the most recent advances in cognitive and complex system sciences.

© 2014 Elsevier Ltd. All rights reserved.

Glossary

Name Description Unit

mp Total mass of proteins in the solution (constant) g
mwp Mass of native whey proteins in the solution g
mcas Mass of casein micelles in the solution g
S0 Initial lipid surface m2

Sfall Lipid surface available for adsorption of both native whey
proteins and casein micelles

m2

Sfres Lipid surface left by casein micelles due to steric effects for
native whey proteins

m2

kwp Adsorption rate of native whey proteins s−1

kcas Adsorption rate of casein micelles s−1

(continued)

Name Description Unit

swp Surface area occupied by 1 g of native whey proteins m2∙g−1

scas Surface area occupied by 1 g of casein micelles m2∙g−1

α Fraction of the adsorbed surface of a casein micelle
reserved for native whey proteins

Dimensionless

wwp

(0)
Initial mass percentage of native whey proteins in the
solution, wwp (0) = mwp (0)/mp (0)

%

wcas

(0)
Initial mass percentage of casein micelles in the solution,
wcas (0) = mcas (0)/mp (0)

%

wwpint Final mass percentage of native whey proteins at lipid
interface relative to the total mass of adsorbed proteins

%

wcasint Final mass percentage of casein micelles at lipid interface
relative to the total mass of adsorbed proteins

%

Γ Final interfacial concentration which corresponds to the
quantity of adsorbed proteins per 1 m2 of lipid surface

mg∙m−2

d3.2 Average diameter of lipid droplet m
ρl Lipid density g∙m−3

ml Mass of lipid (constant) g
μ Population size parameter for the evolutionary algorithms

used in the experience
Dimensionless

(continued on next page)
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(continued)

Name Description Unit

λ Offspring size parameter for the evolutionary algorithms
used in the experience

Dimensionless

ηoperator Distribution index for a genetic operator in the
evolutionary algorithm NSGA-II

Dimensionless

1. Introduction

Building in-silico models for food processes is an important but
difficult task, as there exist various known bottlenecks (Perrot, Trelea,
Baudrit, Trystram, & Bourgine, 2011). The process of model design, for
instance, often relies on computationally expensive optimisations to
match a theoretical model with available data (parameter learning).
Scarcity of data is a classical source of troubles for the optimisation
process, resulting in badly conditioned problems. Solutions provided
by optimisation cannot be exploited directly and must be revisited by
experts, in order to disambiguate equivalent sets of solutions. Facilitat-
ing a high level expert analysis of computational results, or even more,
interaction of expert knowledge with computational processes, is a
challenging task: interactive optimisation is an active field of research
(Takagi, 1998), and its potential applications in the domain of food pro-
cess modelling are numerous.

Optimisation tools are actually often used in a “black box” manner,
and computational optimal results may then yield imprecise, ambigu-
ous or even wrong parameter setting. In this paper, we present a meth-
odology based on evolutionary algorithms (also know as “genetic
algorithms”). Their iterative, population-based, algorithmic structure,
if appropriately exploited, allows the highlighting of various features
of the search space, which correspond to possible pathologies of the

consideredmodel. Expertsmay of course have access to these patholog-
ical features via appropriate theoretical analysis, as soon as they know
what to search for. As we will see below, the observation of the succes-
sive population distributions of the evolutionary algorithms allows as to
get some intuitions about the possible degeneracies of the searched
model, thus making the task of the expert easier. We exemplify this
approach on a complex test case, the prediction of the structure of a
milk gel.

Evolutionary algorithms (EAs) are the generic name for a large set of
techniques that rely on the computer simulation of natural evolution
mechanisms (Artificial Darwinism). Since pioneering works in the sec-
ond half of 20th century (Bremermann, 1962; Fraser, 1957; Holland,
1962; Rechenberg, 1973), Artificial Darwinism techniques have pro-
gressively gained importance in stochastic optimisation and artificial in-
telligence domains for the resolution of difficult optimisation problems,
and particularly for learning the optimal parameters of complexmodels
(Bäck & Schwefel, 1993).

The main idea of EAs is to copy, in a very rough manner, the princi-
ples of natural evolution, that let a population be adapted to his environ-
ment. According to Darwin's theory (Darwin, 1859), adaptation is based
on very simple mechanisms: random variations, inheritance, and sur-
vival/reproduction of the fittest individuals. Transposed into optimisa-
tion algorithms, this scheme has the major advantage of making few
assumptions on the function to be optimised (there is no need to have
a continuous or derivable function for instance). In short, evolutionary
algorithms consider a population of potential solutions exactly as a
population of individuals of a natural population that live, fight and
reproduce. The environment pressure is replaced by an “optimisation”
pressure: the function to be optimised is considered as a measurement
of the adaptation of the individual to its environment (fitness). In this
way, individuals that reproduce are the best ones with respect to the
problem to be solved, and reproduction consists in generating new
solutions via genetic operators (called crossover and mutation by anal-
ogy to nature).

Evolutionary optimisation techniques are particularly well suited to
difficult problems, where classicalmethods fail. Themajor reason of this
success is the tunable combination of oriented and random search
mechanisms that allow injecting a priori, incomplete informations in
the genetic operators, while letting some other more unpredictable
components be randomly searched.

Considering evolutionary optimisation as a “black box”, however, is
not a good strategy in general. The first reason is that one may lose
the opportunity to adapt the mechanisms to the specifics of the prob-
lem, which usually improves the efficiency of the algorithms and re-
duces its computation time. Another reason is related to the internal
mechanisms of the algorithm that performs a sampling of the search

Table 1
Milk gel data used for training (database 1, L1 to L7) and validation (database 2, V1 to V4).

Sample wcas (0) (%) d3.2
(μm)

mp (0) (g) wcasint %ð Þ Г (mg∙m−2) Database

L1 13 0.6 2.47 5 5.6 1
L2 19 0.7 2.44 9 4.8 1
L3 21 0.6 2.42 16 4.0 1
L4 26 0.65 2.40 43 4.9 1
L5 32 0.55 2.40 65 5.6 1
L6 49 0.56 2.39 71 4.2 1
L7 80 0.9 2.37 84 9.3 1
V1 13 0.59 8.79 0 4.66 2
V2 22 0.74 8.47 33 4.4 2
V3 31 0.87 8.64 46 6.88 2
V4 80 0.75 9.18 91 6.93 2

Fig. 1.Model of milk gel formation.
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