

Available online at www.sciencedirect.com

Journal °^fMicrobiological Methods

Journal of Microbiological Methods 73 (2008) 172-178

www.elsevier.com/locate/jmicmeth

Use of the DiversiLab repetitive sequence-based PCR system for genotyping and identification of Archaea

David Cleland^{*,1}, Paul Krader¹, David Emerson²

Bacteriology Program, American Type Culture Collection, Manassas, VA, United States

Received 28 September 2007; received in revised form 4 December 2007; accepted 17 December 2007 Available online 4 March 2008

Abstract

Repetitive elements are short stretches of DNA that are randomly distributed throughout the chromosomes of prokaryotes. The use of PCR primers to amplify intervening sequences of DNA between specific repetitive elements in Bacteria has become a standard method for rapidly genotyping bacterial strains and providing good resolution between multiple strains within a single species. Rapid, standardized methods for high resolution genotyping of Archaea are not widely available. We evaluated the DiversiLab system from Bacterial Barcodes that utilizes a kit-based repetitive sequence-based (rep-PCR) method that has been optimized for genotyping DNA was extracted from the source organisms using either a standard chemical DNA extraction kit or Whatman FTA[®] paper. Rep-PCR was performed using an archaeal primer set and, the products were run on an Agilent, Lab-on-a-Chip DNA analyzer. Results were analyzed and compared using DiversiLab web-based software from Bacterial Barcodes. Seventy-nine strains representing 27 genera of *Crenarchaeota* and *Euryarchaeota* were analyzed. All the organisms could be successfully genotyped and the results were reproducible. We could not detect differences in rep-PCR profiles between DNA extracted using the chemical extraction kit and FTA[®] paper. Thus far, 14 genera and 32 species of methanogens have been analyzed, and all yielded unique genotypes. For halophiles, 11 genera and 28 different species were analyzed, and all yielded unique genotypes. A comparison of 7 different strains of *Halobacterium salinarium* demonstrated that 6 of the 7 strains had a unique genotype. A comparison of 4 strains of *Methanosarcina mazei* indicated that each strain produced a unique genotype. There was little systematic inference that could be made from dendrograms comparing different strains, species, and genera of Archaea based on UPGMA cluster analysis. Based on these results, rep-PCR was a useful tool for the genotyping and strain identification of Archaea.

© 2008 Elsevier B.V. All rights reserved.

Keywords: Sequence-based; PCR; Archaea

1. Introduction

Most methods for rapid and systematic identification of prokaryotes have been developed primarily for the Bacteria and not the Archaea. As a result, the techniques tend to be specific for bacteria, for example fatty acid analysis and automated riboprinting. Identification techniques for archaea are more limited to DNA sequence-based phylogenetic analysis of the small subunit rRNA gene or other phylogentically conserved genes. While these are excellent means of classification, in general, they are not capable of strain-level resolution, and can be relatively laborious to perform. Mass spectrometry has been used for rapid identification of archaea with good results; however mass spectrometry measures phenotypic properties of cells, and as such requires a uniform physiological cell state to yield consistent results (Krader and Emerson, 2004). Strainspecific genotyping methods for archaea are not well established. The use of random amplified polymorphic DNA (RAPD) fingerprinting has been applied to determining the population structure among *Thermococcales* from hydrothermal vents (Lepage et al., 2004); however we are aware of few other studies that have applied genotyping techniques to archaea. With

^{*} Corresponding author. ATCC, 10801 University Blvd, Manassas, VA 20110, United States. Tel.: +1 703 365 2700; fax: +1 703 365 2803.

E-mail address: dcleland@atcc.org (D. Cleland).

¹ These two authors contributed equally to this work.

² Present address: Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, ME 04575, United States.

increasing numbers of archaea being described there is a need for rapid, economical identification methods that provide strainlevel discrimination across diverse taxa.

Repetitive sequence-based PCR (rep-PCR), also referred to as repetitive element PCR and repetitive extragenic palindromic-PCR is a genotyping technique that has been used for over 10 years on a variety of bacteria with much success (Versalovic et al., 1994). This method takes advantage of short repetitive oligonucleotide elements that are scattered throughout the genomes of prokaryotes. By using PCR primers specific for these repetitive sequences it is possible to amplify the intervening regions of DNA. When these DNA fragments are separated electrophoretically they form a fingerprint or barcode that is unique for a given strain. Rep-PCR has become a standard method for rapidly genotyping bacterial strains and providing good resolution between multiple strains within a single species (Healy et al., 2005). However, its use has been confined primarily to bacterial taxa that are of importance to human, animal, or plant health. Relatively little work has been done to determine the efficacy of using rep-PCR to identify the broader diversity of prokaryotes that account for the large majority of environmental microbes. Uses on purely environmental isolates include comparison of Loktanella spp. isolates from microbial mats in Antarctica (Van Trappen et al., 2004), Thermomononas spp. from a bioreactor (Mergaert et al., 2003), and a Halomonas sp. from a microbial biofilm (Heyrman et al., 2002). Other examples of using rep-PCR to determine relationships among microbial populations from specific habitats include an analysis of Bacillus endospores isolated from granite (Fajardo-Cavazos and Nicholson, 2006), halophilic sulfur-oxidizers (Foti et al., 2006), pulp mill wastewater treatment systems (Baker et al., 2003), and the International Space Station (Castro et al., 2004).

We evaluated a rep-PCR kit from Bacterial Barcodes (a division of Biomeriuex) that has been optimized for genotyping Archaea. The method involves extracting DNA from the source organisms, performing a PCR-based amplification using an archaeal primer set provided in the kit, and then separating the amplicons based on size using an Agilent Labon-a-Chip DNA analyzer. Results were analyzed and compared using a web-based analysis system (Bacterial Barcodes, www. bacbarcodes.com). In this study we evaluated the system for its ability to aid in the identification of a diverse set of prokaryotes with a focus on halophilic archaea and methanogens.

2. Materials and methods

2.1. Bacterial strains

All strains analyzed were obtained from ATCC and propagated on recommended media under described conditions, and are shown in Table 1. Media formulations and growth conditions can be found by searching under the organism name or ATCC number on the ATCC website, www.atcc.org.

2.2. Genomic DNA extraction

Cells were harvested in the late log phase of growth from 1.8 to 10 ml of broth, or, in a few cases, as 3-5 colonies from an agar

Table I					
List of strains	tested	in	this	study	

List of strains tested in this study						
Genus/species	ATCC no.	Genus/species	ATCC no.			
Archaea						
Haloarcula		Methanothermobacter				
quadrata	700850	thermautotrophicus	700791			
marismortui	43049	marburgensis	BAA-927			
hispanica	33960	thermophilus	BAA-1076			
vallismortis	29715	Methanocalculus				
japonica	49778	pumilus	BAA-129			
argentinensis	49784	chunghsingensis	BAA-1172			
Halobacterium		Methanocaldococcus				
distributum	51197	jannaschii	43067			
norici	BAA-852	Methanogenium				
salinarum	700922, 17051, 17052, 43214, 33170, 29341, 33171, 19700	organophilum	BAA-914			
		Methanohalophilus				
Halobaculum		halophilus	BAA-1071			
gomorrense	700876	portucalensis	BAA-912			
Halococcus		Methanocorpusculum				
morrhuae	17077, 17082	sinense	BAA-933			
Haloferrarius		bavaricum	BAA-929			
saponlacus	BAA-1337	Methanolobus				
Haloferax		taylorii	BAA-911			
volcanii	29605	vulcani	BAA-932			
gibbonsii	33959	oregonensis	BAA-928			
sulfurifontis	BAA-857	Methanotorris				
mediterranei	33500	formicicus	BAA-687			
sp.	51408	Methanosarcina				
sp.	BAA-644	vacuolata	35090			
Halogeometricum		siciliae	BAA-931			
borinquense	700274	mazei	BAA-159,			
			43572, 43573,			
			43340			
Halorubrum						
hochstenium	700873	Methanohalobium	D. 4. 4050			
lacusprofundi	49239	evestigatum	BAA-1072			
trapanicum	43102	Methanospirillum	27000			
sodomense	33755	hungatii	27890			
Haloterrigena		Natrialba	12000			
turkmenica	51198	magadii	43099			
Methanobacterium	D 1 1 000	Natronococcus	10101			
ivanovii	BAA-930	occultus	43101			
alcaliphilum	43379	Sulfolobus				
palustre	BAA-1077	solfataricus	35092			
aarhusense	BAA-828	Thermococcus				
Methanobrevibacter	D 1 1 1 1 1 1	pacificus	700653			
gottschalkii	BAA-1169	zilligii	700529			
smithii	35061	barossii	BAA-1085			
Methanococcus		Thermoplasma				
vannielii	35089	acidophilum	25905			
maripaludis	43000	volcanium	51530			
aeolicus	BAA-1280					
maripaludis	BAA-1331					
voltae	BAA-1334					
D (1						
Bacteria		T I I .				
Desulfovibrio	DAA 1005	Thermoanaerobacter	DAA 1070			
sp.	BAA-1095	fijiensis Thiorhodococcur	BAA-1278			
Desulfuromonas	DAA 779	Thiorhodococcus	DAA 1262			
michiganensis	BAA-778	bheemlicum	BAA-1362			

Download English Version:

https://daneshyari.com/en/article/2090968

Download Persian Version:

https://daneshyari.com/article/2090968

Daneshyari.com