ELSEVIER

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Stem Cell Line

Derivation of the human embryonic stem cell line RCe009-A (RC-5)

P.A. De Sousa ^{a,b,c,*}, B. Tye ^a, K. Bruce ^a, P. Dand ^a, G. Russell ^a, D.M. Collins ^a, J. Gardner ^a, J.M. Downie ^a, M. Bateman ^a, A. Courtney ^a

- ^a Roslin Cells Limited, Nine Edinburgh Bio-Quarter, 9 Little France Road, Edinburgh EH16 4UX, UK
- ^b Centre for Clinical Brain Sciences, University of Edinburgh, UK
- ^c MRC Centre for Regenerative Medicine, University of Edinburgh, UK

ARTICLE INFO

Article history: Received 11 February 2016 Accepted 14 February 2016 Available online 16 February 2016

ABSTRACT

The human embryonic stem cell line RCe009-A (RC-5) was derived from a frozen and thawed Day 2 embryo voluntarily donated as unsuitable and surplus to requirement for fertility treatment following informed consent under licence from the UK Human Fertilisation and Embryology Authority. RCe009-A carries the common DF508 mutation on the cystic fibrosis trans-membrane regulator gene associated with the disease cystic fibrosis. The cell line shows normal pluripotency marker expression and differentiation to the three germ layers *in vitro*. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data are available.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Resource Table

Name of stem cell construct	RCe009-A	
Alternative name	RC-5, RC5	
Institution	Roslin Cells Ltd.	
Person who created resource	B. Tye, K. Bruce, P. Dand, G. Russell,	
	D. M. Collins, J. Gardner	
Contact person and email	Paul.desousa@roslincells.com;	
-	Paul.desousa@ed.ac.uk	
	Janet.downie@roslincells.com	
	Aidan.courtney@roslincells.com	
	Malcolm.bateman@roslinfoundation.com	
Date archived/stock date	14 March 2008	
Type of resource	Biological reagent: cell line	
Sub-type	hESC, research grade	
Origin	Cleavage stage embryo cultured to	
	blastocyst stage.	
Key transcription factors	Oct4 and Nanog, (confirmed by	
	immunocytochemistry)	
Authentication	See Quality Control Test Summary, Table 1	
Link to related literature (direct	N/A	
URL links and full references)		
Information in public databases	http://hpscreg.eu/cell-line/RCe009-A	
Ethics	Informed consent obtained. Scotland A	
	Research Ethics committee approval	
	obtained (07/MRE00/56). Conducted	
	under the UK Human Fertilisation and	
	Embryology Authority licence no R0136	
	to centre 0202.	

^{*} Corresponding author at: Centre for Clinical Brains Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, Scotland.

E-mail address: paul.desousa@ed.ac.uk (P.A. De Sousa).

Resource Details

RCe009-A (RC-5) was derived from a frozen and thawed, pre-implantation genetic diagnosis embryo confirmed to have a heterozygous cystic fibrosis mutation (DF508 on the CTFR gene). The embryo was received as a Day 2 embryo and grown to blastocyst stage. The cell line was derived by whole embryo outgrowth on mitotically inactivated human fibroblast (HDF) feeder cells using HDF conditioned medium and expanded under feeder free conditions.

RCe009-A (RC-5) was shown to be pluripotent by expression of the pluripotency markers Oct-4, Nanog, SSEA-4, Tra-1-60 and Tra-1-81, but not the differentiation marker SSEA-1, using immunocytochemistry (Table 1, Fig. 1). By flow cytometric analysis, the expression of pluripotency makers Tra-1-60, Tra-1-81 and SSEA-4 was 94.8, 93.6% and 94.8%, respectively, but some expression of the differentiation marker SSEA-1 (37.3%) was observed (Fig. 2). Differentiation to the three germ layers, endoderm, ectoderm and mesoderm, was demonstrated using embryoid body formation and expression of the germ layer markers α -fetoprotein, β -tubulin and muscle actin (Fig. 3).

A microsatellite PCR profile has been obtained for the cell line, and HLA Class I and II typing is available (Table 2). Blood group genotyping gave the blood group AO_1 (Table 2).

Verification and authentication

The cell line was analysed for genome stability by G-banding (Fig. 4) and showed a normal 46XX female genotype. The cell line is free from mycoplasma contamination as determined by RC-qPCR. Microsatellite PCR DNA profiling for cell identity is available.

Table 1Summary of quality control testing and results for RC-5 (RCe009-A).

Classification	Test	Purpose	Result
Donor screening	HIV 1 + 2 Hepatitis B Hepatitis C	Donor screening for adventitious agents	Negative
Identity	Microsatellite PCR (mPCR)	DNA Profiling to give cell line its signature, gender/species	Performed
Phenotype	Immunocytochemisty	To assess levels of staining for the pluripotency markers	Expression of Oct4, Nanog, SSEA-4, Tra-1-60 and Tra-1-81
	Flow cytometry	Assess antigen levels and cell surface markers commonly associated with hESC	Tra-1-60: 94.8% Tra-1-81: 93.6% SSEA-4: 94.8% SSEA-1: 37.3%
Genotype (details provided in Table 2)	Blood group genotyping (DNA analysis)	To establish blood group of the line	AO_1
	Karyology (G-banding)	Confirmation of normal ploidy by G-banding	46XX
	HLA tissue typing	To establish full HLA Type I and II genotype of the line	HLA typed Class I and Class II
Microbiology and Virology	Mycoplasma	Mycoplasma testing by RT-qPCR	Negative
	Endotoxin	Screening for endotoxin levels	1.82 EU/mL
Morphology	Photography	To capture a visual record of the line	Normal
Differentiation potential	Embryoid body formation	To show differentiation to three germ layers	Expression of muscle actin, β-tubulin and α-fetoprotein

Materials and methods

Ethics

Derivation of hESC from surplus to requirement and failed to fertilise/develop embryos was approved by The Scotland A Research Ethics Committee and local ethics board at participating fertility clinics and conducted under licence no. R0136 from the UK HFEA with informed donor consent.

Cell culture

Frozen embryos were thawed using Embryo Thawing Pack (Origio (Medicult), Denmark) using standard techniques and were cultured in EmbryoAssist (Origio) until Day 3 and BlastAssist (Origio) after Day 3 of development. Embryos were cultured at 36.5–37.5 °C, 5 \pm 0.5% CO₂, 5 \pm 0.5% O₂ in drops under paraffin oil (Origio) and transferred to fresh medium at least every 2–3 days.

By Day 8 of development, or when spontaneous hatching occurred, embryos were placed in derivation conditions consisting of mitotically inactivated neonatal human dermal fibroblasts (HDFs) (ThermoFisher Scientific (Cascade Biologics), Paisley, UK) on tissue culture plastic precoated with 2 μ g/cm² human laminin (Sigma Aldrich, Dorset, UK) as per manufacturer's recommendation. If required, assisted hatching was performed by removing the zona pellucidae mechanically using Swemed Cutting tools (Vitrolife, Göteborg, Sweden).

HDF cells were cultured in DMEM (Lonza, Slough, UK), 10% FCS (GE Healthcare (PAA), Buckinghamshire, UK) and 2 mM L-glutamine (ThermoFisher Scientific). HDF were mitotically inactivated using gamma irradiation at 50GY using a Gammacell Elite 1000 machine. For use as a feeder layer, irradiated HDFs were plated at 2–50,000 cells/cm² in HDF conditioned medium (80% Knockout-DMEM, 20% Knockout serum replacement (KOSR), 1 mM glutamine, 0.1 mM β -mercaptoethanol, 1% nonessential amino acids, and 4 ng/ml human bFGF (all ThermoFisher Scientific) over 24 h intervals over 7 days) supplemented with an additional 24 ng/ml human bFGF. Cells were cultured at 36.5–37.5 °C, 5 \pm 0.5% CO₂, 5 \pm 0.5% O₂ and 50% medium exchanged 6 days a week.

The established cell line was expanded and banked using CellStart matrix and Stempro hESC Serum Free Medium (ThermoFisher

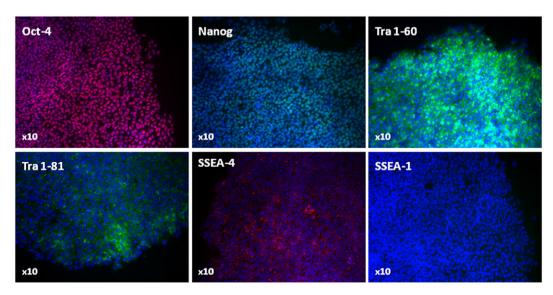


Fig. 1. Immunostaining of RCe009-A (RC5) show expression of pluripotency markers Oct-4, Nanog, Tra-1-60, Tra-1-81 and SSEA-4, but not differentiation marker SSEA-1.

Download English Version:

https://daneshyari.com/en/article/2093985

Download Persian Version:

https://daneshyari.com/article/2093985

<u>Daneshyari.com</u>