Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Stem Cell Line

Derivation of the human embryonic stem cell line RCe012-A (RC-8)

P.A. De Sousa ^{a,b,c,*}, B.J. Tye ^a, K. Bruce ^a, P. Dand ^a, G. Russell ^a, D.M. Collins ^a, A. Greenshields ^a, H. Bradburn ^a, J.M. Downie ^a, M. Bateman ^a, A. Courtney ^a

^a Roslin Cells Limited, Nine Edinburgh Bio-Quarter, 9 Little France Road, Edinburgh, EH16 4UX, UK

^b Centre for Clinical Brain Sciences, University of Edinburgh, UK

^c MRC Centre for Regenerative Medicine, University of Edinburgh, UK

ARTICLE INFO

Article history: Received 16 February 2016 Accepted 19 February 2016 Available online 23 February 2016

ABSTRACT

The human embryonic stem cell line RCe012-A (RC-8) was derived from a frozen and thawed day 5 embryo cultivated to the blastocyst stage. The embryo was voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Resource table

Name of stem cell construct	RCe012-A	
Alternative name	RC-8, RC8	
Institution	Roslin Cells Ltd.	
Person who created resource	B. J. Tye, K. Bruce, P. Dand, G. Russell, D.M.	
	Collins, A. Greenshields, H. Bradburn	
Contact person and email	Paul.desousa@roslincells.com;	
	Paul.desousa@ed.ac.uk	
	Janet.downie@roslincells.com	
	Aidan.courtney@roslincells.com	
	Malcolm.bateman@roslinfoundation.com	
Date archived/stock date	06 September 2010 (seed bank)	
Type of resource	Biological reagent: cell line	
Sub-type	hESC, research grade	
Origin	Blastocyst with ICM and trophoblast	
Key transcription factors	Oct4 (confirmed by flow cytometry)	
Authentication	See Quality Control test summary, Table 1	
Link to related literature (direct	N/A	
URL links and full references)		
Information in public databases	http://hpscreg.eu/cell-line/RCe012-A	
Ethics	Informed consent obtained. Scotland A Research	
	Ethics committee approval obtained	
	(07/MRE00/56). Conducted under the UK Human	

Resource details

RCe012-A (RC-8) was derived from a thawed day 5 blastocyst that was surplus to requirement or unsuitable for clinical use. The cell line

R0136 to centre 0202.

Fertilisation and Embryology Authority licence no

was derived by whole embryo outgrowth on mitotically inactivated human fibroblast (HDF) feeder cells using xeno-free medium (XF KODMEM) and expanded under xeno free and feeder free conditions.

By flow cytometry, RCe012-A (RC-8) expressed the pluripotency makers Oct-4, Tra-1-60 and SSEA-4 (94.7%, 89.4% and 99.8%, respectively), whereas low expression of the differentiation marker SSEA-1 (2.2%) was observed (Fig. 1, Table 1). Differentiation to the three germ layers, endoderm, ectoderm and mesoderm, was demonstrated using embryoid body formation and expression of the germ layer markers α fetoprotein, β -tubulin and muscle actin (Fig. 2).

A microsatellite PCR profile has been obtained for the cell line, and HLA Class I and II typing is available (Table 2). Blood group genotyping gave the blood group AO_1 (Table 2).

Verification and authentication

The cell line was analysed for genome stability by G-banding (Fig. 3) and showed a normal 46XX female genotype. The cell line is free from mycoplasma contamination as determined by RC-qPCR. Microsatellite PCR DNA profiling for cell identity is available (Table 2).

Materials and methods

Ethics

Derivation of hESC from surplus to requirement and failed to fertilise/develop embryos was approved by The Scotland A Research Ethics Committee and local ethics board at participating fertility clinics and conducted under licence no R0136 from the UK HFEA with informed donor consent.

http://dx.doi.org/10.1016/j.scr.2016.02.033

1873-5061/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

CrossMark

^{*} Corresponding author at: Roslin Cells Limited, Nine Edinburgh Bio-Quarter, 9 Little France Road, Edinburgh, EH16 4UX, UK.

P.A. De Sousa et al. / Stem Cell Research 16 (2016) 489-492

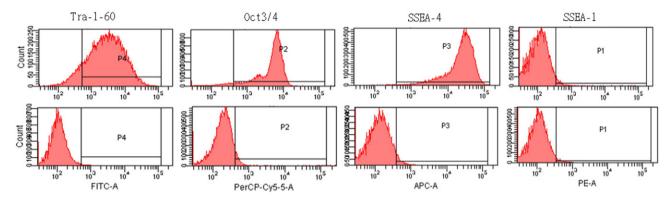


Fig. 1. RCe012-A (RC-8) was subjected to flow cytometry analysis for markers of pluripotency with specific antibody (top row) or isotype control (bottom row) as indicated above the histograms. Percentage staining is indicated in Table 1.

Cell culture

Vitrified embryos were thawed using Vitrified Embryo Safety Thawing Pack (Kitazato/Dibimed, Valencia, Spain) according to manufacturers' instruction and were cultured in system SAGE Quinn's Advanced Blastocyst medium (Rochford Medical, Coventry) after day 3 of development. Embryos were cultured at 36.5–37.5 °C, 5 \pm 0.5% CO₂, 5 \pm 0.5% O₂ in drops under paraffin oil (Rochford Medical) and transferred to fresh medium at least every 2–3 days.

By day 8 of development, embryos were placed in derivation conditions consisting of mitotically inactivated neonatal human dermal fibroblasts (HDFs) (ThermoFisher Scientific (Cascade Biologics), Paisley, UK) on tissue culture plastic in XF KODMEM medium (Knockout-DMEM, 15% KOSR-XF, 2 mM L-glutamine, 1% MEM Non-essential amino acids, 2% XF Growth Factor Cocktail, 0.1 mM β -mercaptoethanol, all ThermoFisher Scientific, Paisley, UK) supplemented with 80 ng/ml human bFGF (ThermoFisher Scientific). Assisted hatching was performed by removing the zona pellucidae mechanically using Swemed Cutting tools (Vitrolife, Göteborg, Sweden).

HDF cells were cultured in DMEM (Lonza, Slough, UK), 10% FCS (GE Healthcare (PAA), Buckinghamshire, UK) and 2 mM L-glutamine (ThermoFisher Scientific). HDFs were mitotically inactivated using gamma irradiation at 50GY using a Gammacell Elite 1000 machine. For use as a feeder layer, irradiated HDFs were plated at 50,000 cells/ cm² in XF KODMEM medium supplemented with 80 ng/ml human

bFGF (ThermoFisher Scientific). Cells were cultured at 36.5–37.5 °C, $5 \pm 0.5\%$ CO₂, $5 \pm 0.5\%$ O₂ and 50% medium exchanged 6 days a week.

The established cell line was expanded and banked using CellStart matrix and Stempro hESC Serum Free Medium (ThermoFisher Scientific). Passaging was performed mechanically using an EZ passage tool (ThermoFisher Scientific). hESC lines were expanded to 25–30 wells of a 6-well plate and cryopreserved in 0.5-1 ml Cryostor CS10 (Biolife Solution, Washington, USA).

Mycoplasma

Mycoplasma detection was performed using Applied Biosystems PrepSEQ[™] Mycoplasma Nucleic Acid Extraction Kit and MicroSEQ[™] Mycoplasma Real-Time PCR Detection Kit (ThermoFisher Scientific (Applied Biosystems)) according to manufacturer's instruction.

Endotoxin

Endotoxin levels were determined using the Kinetic-QCL assay (Lonza) and an incubating plate reader (BioTek ELx808) according to manufacturer's instructions. Briefly, an unknown sample was compared with a standard curve of known levels of control endotoxin. An assay was deemed valid if the coefficient of correlation, $r \ge 0.980$ and the CV (%) for the standard curve was $\le 10\%$.

Table 1

Summary of quality control testing and results for RCe012-A (RC-8).

	Test	Purpose	Result
Classification			
Donor screening	HIV 1 + 2 Hepatitis B Hepatitis C	Donor screening for adventitious agents	Negative
Identity	Microsatellite PCR (mPCR)	DNA profiling to give cell line its signature, gender/species	Performed
Phenotype	Flow cytometry	Assess antigen levels & cell surface markers commonly associated with hESC	Oct 3/4: 94.7% Tra 1-60: 89.4% SSEA-4: 99.8% SSEA-1: 2.2%
(details provided in Table 2) (DNA Karyol	Blood group genotyping (DNA analysis)	To establish blood group of the line	0101
	Karyology (G-banding) HLA tissue typing	Confirmation of normal ploidy by G-banding To establish full HLA type I and II genotype of the line	46XX HLA typed class I and class II
Microbiology and virology	Mycoplasma Endotoxin	Mycoplasma testing by RT-qPCR Screening for endotoxin levels	Negative 0.54 EU/ml
Morphology	Photography	To capture a visual record of the line	Normal
Differentiation potential	Embryoid body formation	To show differentiation to three germ layers	Expression of muscle actin, β -tubulin and α -feto protein

Download English Version:

https://daneshyari.com/en/article/2094002

Download Persian Version:

https://daneshyari.com/article/2094002

Daneshyari.com