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Stem cell differentiation is a complex biological event. Our understanding of this process is partly hampered by
the co-existence of different cell subpopulations within a given population, which are characterized by different
gene expression states driven by different underlying transcriptional regulatory networks (TRNs). Such cellular
heterogeneity has been recently explored with the modern single-cell gene expression profiling technologies,
such as single-cell RT-PCR and RNA-seq. However, the identification of cell subpopulation-specific TRNs and
genes determining specific lineage commitment (i.e., lineage specifiers) remains a challenge due to the slower
development of appropriate computational and experimental workflows. Here, we propose a computational
method for predicting lineage specifiers for different cell subpopulations in binary-fate differentiation events.
Our method first reconstructs subpopulation-specific TRNs, which is more realistic than reconstructing a single
TRN representingmultiple cell subpopulations. Then, it predicts lineage specifiers based on amodel that assumes
that each parental stem cell subpopulation is in a stable state maintained by its specific TRN stability core. In ad-
dition, this stable state is maintained in the parental cell subpopulation by the balanced gene expression pattern
of pairs of opposing lineage specifiers for mutually exclusive different daughter cell subpopulations. To this end,
we devised a statisticalmetric for identifying opposing lineage specifier pairs that show a significant ratio change
upon differentiation. Application of this computational method to three different stem cell systems predicted
known and putative novel lineage specifiers, which could be experimentally tested. Ourmethod does not require
pre-selection of putative candidate genes, and can be applied to any binary-fate differentiation system for which
single-cell gene expression data are available. Furthermore, this method is compatible with both single-cell
RT-PCR and single-cell RNA-seq data. Given the increasing importance of single-cell gene expression data in
stemcell biology and regenerativemedicine, approaches like ourswould be useful for the identification of lineage
specifiers and their associated TRN stability cores.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Stem cell differentiation is a complex process that involves a multi-
tude of regulatory mechanisms at different organizational levels. De-
spite accumulating experimental evidence, identification of lineage
specifiers and understanding of the regulatory mechanisms of cell-fate
commitments are partially hampered by the heterogeneity in stem
cell populations. Indeed, stem cells in tissues and culture exist as a
heterogeneous population consisting of different subpopulations,
which are characterized by different gene expression states driven by
different underlying TRNs. Different TRNs in turn determine different
propensities for cell fate decision. Hence, conventional bulk gene ex-
pression profiling and ChIP-seq approaches generated from a heteroge-
neous population of cells appear to be suboptimal for studying stem cell
differentiation (Moignard et al., 2013). Recent development of modern

technologies for single-cell gene expression studies, such as single-cell
RT-PCR and RNA-seq, have made possible gene expression profiling of
hundreds of cells. They have been successfully used for elucidating het-
erogeneity in different stem cell systems, including the early embryonic
development (Guo et al., 2010; Tang et al., 2010), hematopoiesis
(Moignard et al., 2013; Guo et al., 2013), induced pluripotent stem
cells (Buganim et al., 2012) and lung alveolar development (Treutlein
et al., 2014). Nevertheless, a remaining challenge is the development
of computational methods for elucidating complex molecular interaction
networks and predicting lineage specifiers within a heterogeneous cell
population. A couple of studies has proposed computational workflows
for predicting cell lineage specifiers by reconstructing a single TRN that
represents multiple cell types (Xu et al., 2014; Moignard et al., 2015).
However, it has been revealed that cell subpopulation-specific TRNs
showed significant rewiring during differentiation (Moignard et al.,
2013). Hence, TRNs that are differentially reconstructed for different cell
subpopulations provide a more realistic picture of underlying transcrip-
tional regulatory mechanisms.
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Here, we introduce a general method for predicting lineage speci-
fiers in binary-fate differentiation events based on the reconstruction
of cell subpopulation-specific TRNs using single-cell gene expression
data. Our method is based on a model, in which each stem cell subpop-
ulation is considered to be in a stable statemaintained by a TRN stability
motif. We particularly focused on a set of circuits known as strongly
connected components (SCCs) that we previously used for the predic-
tion of reprogramming determinants (Crespo and Del Sol, 2013). The
model further assumes that the stability of a parental stem cell subpop-
ulation, which differentiates into two mutually exclusive daughter cell
subpopulations, is maintained by a balance between the two opposing
differentiation forces exerted by lineage specifiers for each of the two
daughter cell subpopulations. Indeed, this “seesaw model” of stem cell
differentiation has been observed during mesendodermal and ecto-
dermal specification of embryonic stem cells (ESCs) (Montserrat et al.,
2013; Shu et al., 2013). In this case, the balanced expression of a
mesendodermal specifier, Pou5f1, and an ectodermal specifier, Sox2,
which mutually activate each other, maintains the pluripotent state.
Hence, themethod searches for opposing lineage specifier pairs that re-
side in the TRN stability core of the parental cell subpopulation, and ex-
hibit a significantly unbalanced expression ratio in the daughter cell
sub-populations with respect to the parental cell subpopulation.

To assess the applicability of our method, we selected three binary-
fate stem cell differentiation systems for which high-quality single-cell
gene expression data are available. These examples include the differen-
tiation of inner cell mass (ICM) into either primitive endoderm (PE) or
epiblast (EPI) (Guo et al., 2010), the differentiation of different progen-
itor cells in the hematopoietic system (hematopoietic stem cell (HSC)
into either multipotent progenitor (MPP) or megakaryocyte–erythroid
progenitor (MEP), MPP into common myeloid progenitor (CMP) or
common lymphoid progenitor (CLP), and CMP into either MEP or gran-
ulocyte–macrophage progenitor (GMP)) (Guo et al., 2013), and the dif-
ferentiation of lung alveolar bipotential progenitor (BP) into either
alveolar type 1 (AT1) or alveolar type 2 (AT2) (Treutlein et al., 2014).
In the first example Gata6 for PE and Klf2 for EPI were predicted,
which is in full agreement with previously reported experimental ob-
servations (Fujikura et al., 2002; Yeo et al., 2014; Gillich et al., 2012).
In addition, many well-known lineage specifiers in the hematopoietic
system, such as Cebpa (Radomska et al., 1998), Gata1 (Pevny et al.,
1991), Gfi1 (Li et al., 2010) and Spi1 (PU.1) (Voso et al., 1994) were
correctly predicted for appropriate subpopulations, demonstrating the
validity of our approach. Finally, our predictions in the relatively under-
studied lung BP developmental system provided novel candidate lineage
specifiers with prior associations with lung development, including Hes1
(Ito et al., 2000) and Pou6f1 (Sandbo et al., 2009).

To our knowledge, this is thefirst computationalmethod that system-
atically predicts cell lineage specifiers based on cell subpopulation-
specific TRNs. Our method does not require pre-selection of candidate
genes, and can be applied to any binary-fate differentiation event for
which single-cell gene expression data are available. Finally, this method
is compatible with both single-cell RT-PCR and single-cell RNA-seq data.
Given the increasing importance of single-cell gene expression data in
stem cell biology, we believe that approaches like ours would be useful
for the identification of lineage specifiers. This should aid in understand-
ing stem cell lineage specification and the development of strategies for
regenerative medicine (Li and Kirschner, 2014).

2. Materials and methods

2.1. Formulation of binary-fate stem cell differentiation model

Our model assumes that each stem cell subpopulation is in a stable
state – i.e., an attractor – in the gene expression landscape determined
by their TRNs. Within TRNs, SCCs, which consist of a set of circuits and
confer autonomous stability to TRNs, have been previously used for
identifying cell fate determinants (Crespo and Del Sol, 2013; Ertaylan

et al., 2014). The model further assumes that such stability is maintained
by the balanced expression pattern between opposing lineage specifiers,
as was previously demonstrated in the ESC system (Montserrat et al.,
2013; Shu et al., 2013). Therefore, we propose that genes involved in lin-
eage specification belong to the SCC of the parental cell subpopulation,
and that they exhibit a significantly unbalanced gene expression pattern
in the daughter cell subpopulations in comparison to the parental cell
subpopulation. Finally,we assume that lineage specifiers for one daughter
cell subpopulation should be differentially active in comparison to the
other daughter cell subpopulation.

2.2. Single-cell gene expression data processing

The single-cell gene expression datasets formouse ICMdifferentiation
(Guo et al., 2010), HSC differentiation (Guo et al., 2013) and lung BP
differentiation (Treutlein et al., 2014) were obtained from Gene Expres-
sion Omnibus (GEO). Transcription factors/regulators (TFs) annotated at
(http://www.bioguo.org/AnimalTFDB/) (Zhang et al., 2012)were extract-
ed from these datasets, resulting in around 26, 55 and 900 total TFs, re-
spectively. In the first two RT-PCR datasets the normalized CT values
were converted into gene expression values by applying a base 2 expo-
nential transformation as described in (Schmittgen and Livak, 2008). For
the third dataset, the FPKM values were used and the missing values
were imputed with the lowest expression value. We used the same
single-cell sample classes as in the respective datasets. The ICM, PE and
EPI subpopulations were unbiasedly classified by principle component
analysis (PCA) (Guo et al., 2010), the HSC, MPP, CMP, MEP, GMP and
CLP subpopulations were classified by combinations of surface markers
(Guo et al., 2013), and the BP, AT1 andAT2 subpopulationswere classified
by PCA (Treutlein et al., 2014).

2.3. Gene expression booleanization

For Booleanization of the gene expression data, we compared the
significance of the expression of each gene in each subpopulation
against the background distribution formed by the union of the expres-
sion values of all cell subpopulations that co-exist at a given moment.
For example, the ICM and trophoectoderm (TE) cell subpopulations
co-exist in the 32-cell stage cells and therefore the expression of ICM
genes was compared against the background expression formed by
both ICM and TE cells. Similarly, the Booleanization of the gene expres-
sion of PE and EPI was performed against the background expression
formed by all 64-cell stage cells (i.e., PE, EPI and TE (64C)). The six sub-
populations of the HSC dataset co-exist in the mouse bone marrow,
therefore the background expression was formed by combining all the
six subpopulations. The BP, AT1 and AT2 cell subpopulations also co-
exist at embryonic day 18.5 and the background expressionwas formed
by combining all these three subpopulations. Since the gene expression
values did not follow a normal distribution, the significance p-value of a
gene against the background expression was non-parametrically com-
puted using the one-sided Mann–Whitney–Wilcoxon test. The cutoff
of p-value ≤ 0.4 was set, belowwhich the expression of a genewas con-
sidered differentially active “1”, and otherwise “0” (i.e., not significantly
differentially active) in a Boolean manner. This significance threshold
was empirically determined based on several marker genes whose ex-
pression states are well-known to be active in certain subpopulations.
The Booleanized expression data are available in Tables S1–S3.

2.4. TRN reconstruction

1. Network inference from literature knowledge: The information
about experimentally validated interactions among TFs was retrieved
from the MetaCore™ server (Nikolsky et al., 2005). The interaction
types “Transcriptional regulation” and “Binding”were selected. These
data include the information on the directionality of the interactions
and its mode of action (i.e., activation or inhibition, or unspecified
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