Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab resource: Stem cell line

Human embryonic stem cells derived from abnormal blastocyst donated by glucose-6-phosphate dehydrogenase deficiency patient

Hao Zhou ^{a,1}, Xiaoying Zhou ^{b,1}, Qingqing Yang ^a, Long Li ^a, Juan Du ^{a,c,d}, Guangxiu Lu ^{b,c,d}, Ge Lin ^{a,b,c,d}, Qi Ouyang ^{a,b,c,*}

^a Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China

^b National Engineering and Research Center of Human Stem Cell, Changsha, China

^c Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, China

^d Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China

ARTICLE INFO

Article history: Received 25 November 2015 Accepted 1 December 2015 Available online 8 December 2015

ABSTRACT

A human embryonic stem cell (hESC) line was derived from abnormal embryo donated by Glucose-6-phosphate dehydrogenase (G6PD) deficiency patient. Sequencing analysis confirmed that the hESC line possessed the mutant contributing to abnormal expression of G6PD. Further characteristic analysis demonstrated that the favism hESC line maintained stable and normal karyotype, expressed pluripotent markers and had the capacity of generating the derivatives from all three germ layers.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Resource table:

Name of stem cell construct	chHES-415
Institution	National Engineering and Research Center of Human Stem Cell
Person who created resource	Xiaoying Zhou, Qi Ouyang
Contact person and email	Qi Ouyang: loretta0730@163.com
Date archived/stock date	Sep 25, 2014
	abnormal blastocyst from
Origin	Glucose-6-phosphate dehydrogenase
	deficiency patient
Type of resource	human embryonic stem cells derived from
	PGD-analyzed abnormally embryo
Sub-type	cell line
Key transcription factors	NANOG, POU5F1, SOX2
Authentication	Identity and purity of cell line
Link to related literature (direct	commueu (Fig. 1)
LINK to related interature (direct	N/A
Information in public databases	N/Δ
mormation in public databases	11/11

Resource details

Human embryonic stem cell (hESC) line chHES-415 was derived from abnormal blastocyst donated by G6PD deficiency patient after informed consent. Sequencing analysis confirmed a heterozygous missense mutation c.1376G > T (p.R459L) of G6PD in the cells(Fig.1A). This mutation was already documented in the main databases such as HGMD (http://www.hgmd.cf.ac.uk/ac/search.php) and ClinVar (http:// www.ncbi.nlm.nih.gov/clinvar), indicating a pathogenic effect of this nucleotide change. The result is consistent with that of the proband. These cells expressed pluripotency-related genes NANOG, POU5F1, SOX2 (Fig.1B) and were positive for pluripotent markers POU5F1, NANOG, TRA-1-81 and TRA-1-60 as well as alkaline phosphatase (Fig.1C). During long-term culture on the mitotically inactivated mouse embryonic fibroblasts (MEFs), this cell line maintained a stable karyotype 46, XX (Fig.1D). The differentiation capacity of this cell line was confirmed through in vitro and in vivo assays. The cells from embryoid bodies expressed the key genes related with the development of main organs from all three germ layers, such as ectoderm markers (PAX6, SOX1, KRT17), mesoderm markers (T, FLK1, RUNX1) and endoderm markers (FOXA2, CXCR4, GATA4) (Fig.1B), while the teratoma contained a complex pattern of differentiation to three germ layers was detected in teratoma (Fig.1E).

Materials and methods

Source of embryo

* Corresponding author at: Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.

E-mail address: loretta0730@163.com (Q. Ouyang).

¹ These authors contribute equally to this study.

The ethical committee of Reproductive and Genetic Hospital of CITIC-Xiangya approved this experiment. Abnormal embryo with

1873-5061/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Download English Version:

https://daneshyari.com/en/article/2094309

Download Persian Version:

https://daneshyari.com/article/2094309

Daneshyari.com