FISEVIER

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab resource: Stem cell line

Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H196

Adele G. Marthaler ^{a,b,*,1}, Benjamin Schmid ^{c,1}, Alisa Tubsuwan ^{c,d}, Ulla B. Poulsen ^c, Alexander F. Engelbrecht ^a, Ulrike A. Mau-Holzmann ^e, Poul Hyttel ^a, Jørgen E. Nielsen ^b, Troels T. Nielsen ^b, Bjørn Holst ^c

- ^a Department of Clinical and Veterinary Animal Science, Copenhagen University, Grønnegårdsvej 7, 1870 Frederiksberg C, Denmark
- b Neurogenetic Research Laboratory, Danish Dementia Research Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
- ^c Bioneer A/S, Kogle Allé 2, 2970 Hørsholm, Denmark
- ^d Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- e Institute of Medical Genetics and Applied Genomics, Division of Cytogenetics, Calwerstrasse 7, University of Tübingen, 72076 Tübingen, Germany

ARTICLE INFO

Article history: Received 24 December 2015 Accepted 29 December 2015 Available online 3 January 2016

ABSTRACT

Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease primarily affecting the cerebellum. Very little is known about the molecular mechanisms underlying the disease and, to date, no cure or treatment is available. We have successfully generated *bona fide* induced pluripotent stem cell (iPSC) lines of SCA2 patients in order to study a disease-specific phenotype. Here, we demonstrate the gene correction of the iPSC line H196 clone 7 where we have exchanged the expanded CAG repeat of the *ATXN2* gene with the normal length found in healthy alleles. This gene corrected cell line will provide the ideal control to model SCA2 by iPSC technology.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Resource table

Name of stem cell construct	H196 clone7 GC
Institution	University of Copenhagen and Bioneer A/S
Person who created resource	Adele G. Marthaler, Benjamin Schmid
Contact person and email	Adele G. Marthaler,
	adele.marthaler@sund.ku.dk
Date archived/stock date	July 2015
Origin	Human induced pluripotent stem cell line
	H196 clone 7
Type of resource	Gene-corrected induced pluripotent stem
	cells; originally derived from skin fibroblasts of
	patient with spinocerebellar ataxia type 2
Sub-type	Cell line
Key transcription factors	Episomal plasmids containing hOCT4, hSOX2,
	hL-MYC, hKLF4, hLIN28, and shP53 (Addgene
	plasmids 27077, 27078 and 27080; Okita et al.
	2011)
Authentication	Identity and purity of stem cell line confirmed
	(Fig. 1)
Link to related literature (direct	
URL links and full references)	

^{*} Corresponding author.

Information in public databases

2. Resource details

An induced pluripoten stem cell (iPSC) line had been generated from human skin fibroblasts of a male, symptomatic 52-year-old spinocerebellar type 2 (SCA2) patient (anonymized as H196) using episomal vectors carrying transcripts for human *OCT4*, *SOX2*, *KLF4*, *L-MYC*, *LIN28*, and small hairpin RNA for *TP53* (Okita et al. 2011). This cell line, H196 clone (c) 7, has been described as a *bona fide* iPSC line with a normal karvotype (Marthaler et al., submitted to Stem Cell Research).

We have generated a gene-corrected clone of H196 c7 using the CRISPRs/Cas9 system (Ran et al. 2013), where the expanded 36 CAG region in the *ATXN2* gene has been replaced with a wildtype 22 CAG repeat (Fig. 1A). Successful exchange was validated by sequencing (Fig. 1B). We have furthermore confirmed that the DNA sequence stayed intact and no frameshift or other mutation had been introduced into the gene edited site, by analyzing the region around the CRISPR cutting site (nucleotide 119–141 in Fig. 1A).

Subsequently, we confirmed that the gene corrected clone of H196 c7, termed H196 c7 GC, remained truly pluripotent. This was demonstrated by expression of key pluripotency markers on RNA, as well as protein level (Fig. 1C and D). Additionally, H196 c7 GC retained the potential to differentiate into cell types of the three germ layers upon embryoid body formation (Fig. 1E). More importantly, no genetic chromosomal aberrations were introduced by the gene editing process and the cells still exhibit a normal karyotype (Fig. 1F).

E-mail address: adele.marthaler@sund.ku.dk (A.G. Marthaler).

¹ These authors contributed equally to this work.

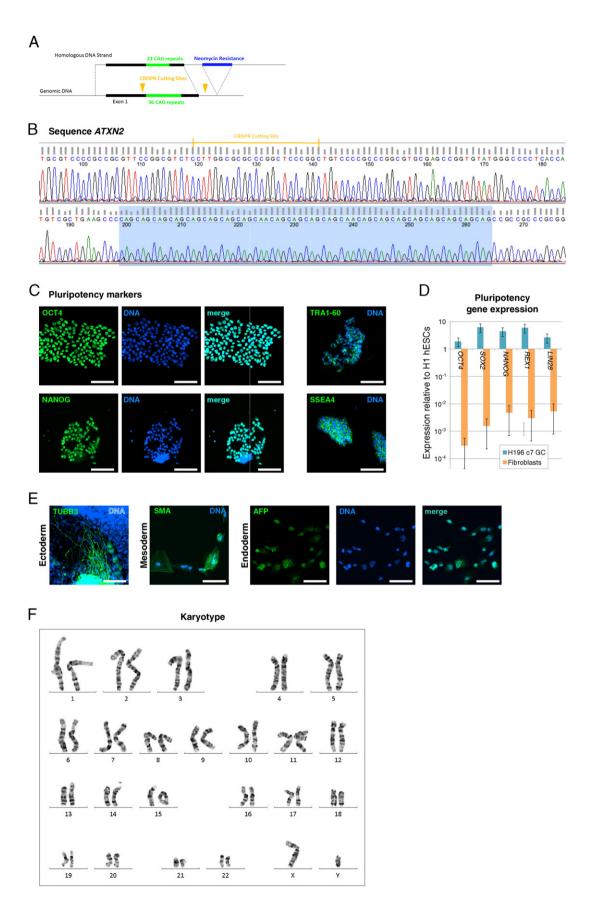


Fig. 1. (caption on page 164).

Download English Version:

https://daneshyari.com/en/article/2094328

Download Persian Version:

https://daneshyari.com/article/2094328

<u>Daneshyari.com</u>