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The gross calorific value (GCV) of coal is important in both the direct use and conversion into other fuel forms of
coals. The measurement of GCV usually requires sophisticated bomb calorimetric experimental apparatus and
expertise, whereas proximate analysis is much cheaper, easier and faster to conduct. This paper presents the ap-
plication of three regression models, i.e., support vector machine (SVM), alternating conditional expectation
(ACE) and back propagation neural network (BPNN) to predict the GCV of coals based on proximate analysis
information. Analytical data of 76 Chinese coal samples, with a large variation in rank were acquired and used
as input into thesemodels. Themodeling results show that: 1) all threemethods are generally capable of tracking
the variation trend of GCVwith the proximate analysis parameters; 2) SVM performs the best in terms of gener-
alization capability among themodels investigated; 3) BPNN has the potential to outperform SVM in the training
stage and ACE in both training and testing stages; however, its prediction accuracy is dramatically affected by the
model parameters including hidden neuron number, learning rate and initial weights; 4) ACE performs slightly
better with respect to the generalization capability than does BPNN, on an averaged scale.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Unconventional fuel resources, such as coalbed methane [1–3] and
shale gas [4,5] are increasingly adding to the world energy supply.
Coal as a conventional fossil fuel, however, still plays a vital role in now-
adays industrial fields like electricity generation, cement making and
conversion to coke for the smelting of iron ore [6]. The calorific value
of coal is of great importance in both its direct use and the conversion
to other useful forms of fuel [7]. The calorific value is usually expressed
as gross calorific value (GCV) or higher heating value (HHV). Estimating
the GCV from the elemental composition of fuel is one of the basic steps
in performance modeling and calculations on thermal systems [8].

To date, a variety ofmultivariate parametric regression (MPR)models
[7,9–20] have been proposed for predicting the GCV of coal based on
proximate and/or ultimate analysis information. These models, accord-
ing to the input parameters, can be classified into three groups: proxi-
mate analysis based [9–16], ultimate analysis based [15,17,18], and
hybrid analyses based [7,14,19,20]models (Table 1). The proximate anal-
ysis basedmodels incorporate one or several compositions, i.e., fixed car-
bon (FC), ash (A), moisture (M), and volatile matter (VM) measured
from proximate analysis whereas the ultimate analysis based models

use the element(s) (i.e., C, H, O, N, and S) as input. The hybrid analysis
basedmodels use a combination of both analysis information. Amajority
of these studies found that GCV models incorporating ultimate analysis
information generally have higher prediction accuracy than those incor-
porating only proximate analysis parameters. Essentially, ultimate analy-
sis based models are superior to proximate analysis based ones in terms
of accuracy. Ultimate analysis, however, is usually more expensive and
tedious than proximate analysis and even bomb calorimeter experimen-
tal method. By contrast, proximate analysis is often easier, cheaper and
faster to carry out; therefore, developing its correlation with GCV might
be of more significance and should provide influential contribution to
this area [9]. A disadvantage of applyingMPR is that it is subject to a priori
assumption of function form before regression. The function forms may
lead to inaccurate or even absurd results [21,22] if assumed improperly.

In addition to MPR, the artificial neural networks (ANNs) [23–30]
were also applied for predicting GCV based on proximate and/or ulti-
mate analysis information [14,16,18,23]. Among the ANNs used in this
area, the back propagation neural networks (BPNNs) are most widely
utilized. Mesroghli et al. [14] demonstrate that ANNs are not better or
much different from MPR in terms of error assessment whereas other
researchers [16,18] show that the ANN models have higher accuracy
than that by the MPR method. Despite the relatively strong power in
exploring the correlation between dependent and independent vari-
ables, ANNs often suffer from a deficiency that their performance is
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significantly influenced by a set of model parameters such as initial
weights, hidden neuron number, and learning rate [30,31]. The repro-
ducibility as well of results from ANN may be questioned partly due to
the random initialization of the networks [32].

Support vector machine (SVM) has been demonstrated to be a pow-
erful regression tool and applied in numerous prediction problems in
varying fields [31,34,35]. The unique merit of using the structural risk
minimization principle has made it especially effective in dealing with
small samples than ANNs [31]. Another advantage of SVM over ANNs
is that fewer parameters need to be optimized.

Alternating conditional expectation (ACE) is a nonparametric meth-
od for multivariate nonparametric regression that was first proposed by
Breiman and Friedman [36], and later refined by Xue et al. [37]. Similar
to SVM andANN, amost distinguishing advantage of ACE over paramet-
ric regression is that it is totally data driven and does not require a prior
assumption of functional forms [32,38,39]. The effect of each input on
the response can be uncovered once optimal transforms are estimated.
Unlike BPNN or SVM, ACE does not require, and therefore, is not influ-
enced by model parameters, which eliminates the complicated work
of parameter optimization. To date, neither SVM nor ACE has been
used to predict GCV of coals. To bridge this gap, this paper intends to in-
vestigate and compare the prediction performance of three correlation
tools, i.e., SVM, ACE and BPNN.

2. Basics of the regression models

2.1. SVM

SVM regression models are supervised machine learning models
with associated learning algorithms. Given an n-dimension input vector
x= {x1, x2,…, xn} and its corresponding target vector y= {y1, y2,…, yn},
SVM aims to find a function f(x) that has at most ɛ deviation from the
actually obtained targets yi for all training data and, at the same time,
is as smooth as possible [40]. To realize this goal, SVM maps the input
data in true space into a higher dimensional feature space via a nonlin-
ear mapping function and linear regression is conducted in this space
[41]. Thus, the problem of estimating the nonlinear regression in input

space is converted into approximation of linear regression in the
mapped higher feature space. SVM can be mathematically expressed as

f xð Þ ¼ wϕ xð Þ þ b ð1Þ

where ϕ(x) is a mapping function;w and b are a weight vector and bias
value respectively which can be estimated by minimizing a regularized
risk function (see Appendix A). The minimization problem is further
converted to a dual optimization problem through the minimization
of the Lagrange function, which involves the use of a selected kernel
function.

2.2. ACE

The basic idea behind ACE is to estimate the transformations of a de-
pendent and a set of independent variables that produce themaximum
linear effect between the transformed independent and dependent
variables [37]. Given the same variables as defined in Section 2.1, the
ACE regression model can be written as:

ψ yð Þ ¼ aþ
Xn
i¼1

φi xið Þ þ δ ð2Þ

where φi and ψ are the transform functions of the independent variable
xi and dependent variable y, respectively. To obtain the solutions of
optimal transforms, a series of single function minimizations are con-
ducted. Two basic mathematical operations, i.e., conditional expecta-
tions and iterative minimization are used during the minimization
process [38]. The iteration process terminates when the error variance
is satisfied, resulting in the optimal transforms referred to asφi

⁎(xi)
andθ*(y). It is noted that these functions appear as a series of point
pairs [ψ*(yi) − yi] or [φi

⁎(xi) − xi] in the computing algorithm rather
than being explicitly available [42]. More detail concerning the mathe-
matical formulations of ACE is presented in Appendix B.

2.3. BPNN

BPNNs are computational models consisting of a group of highly in-
terconnected nodes (neurons). The most basic and commonly used

Table 1
Summary of the MPR models for prediction of GCV of coals in previous literatures.

Model classification Ref. GCV (MJ/kg) Basis Country R2

Proximate analysis based
[9] 0.836 M−8.155A−3.559VM0.35FC0.626 a.r. Turkey 0.97

0.561 M−6.137VM0.381FC0.666 0.97
33.078–0.72 M + 0.012 M2 − 1.163 M3 − 0.324A2 0.97

[10] 4.183 × 10−3 × (82FC + kVM) daf n.g n.g
[11] 4.183 × 10−3 × (8000 + VM × (70 − 1.65 × VM)) daf n.g n.g
[12] 4.184 × 10−3 × (9170 − 16VM − 60 M(1 − 0.001 M) n.g. India n.g
[13] −0.03A − 0.11 M + 0.33VM + 0.35FC a.r. India 0.98
[14] 37.777 − 0.647 M − 0.387A − 0.089VM a.r. US 0.97
[15] 35.391 − 0.47 M − 0.364A − 0.028 V n.g. Afghan 0.998
[16] −3.57 + 0.31VM + 0.34FC a.r. Slovenia 0.971

Ultimate analysis based
[15] −0.408 + 1.243H + 0.348C − 0.1 N − 0.111O + 0.112S n.g. Afghan 0.998
[17] 0.3278C + 1.419H + 0.09257S − 0.1379O + 0.637 dmmf n.g n.g
[18] 64.62 − 0.262C − 0.579O − 0.46S daf US 0.69

Hybrid analysis based
[7] 10−3 × (198.11C + 620.31H + 80.93S + 44.95A − 5159) dry US n.g.
[14]a −26.29 + 0.275A + 0.605C + 1.352H + 0.840 N + 0.321S a.r. US 0.99

6.971 + 0.269C + 0.195 N − 0.061A − 0.251Oex + 1.08Hex − 0.21 M a.r. US 0.995
[19] 4.183 × 10−3 × (8781 + 19VM − 144O) n.g. n.g n.g
[20]b 4.183 × 10−3 × (144.54C + 610.2H + 40.5S − (65.88 − 30.96O/(100 − A))) ua. ua. ua.

Note: a.r. = as received; daf = dry-ash-free; dmmf = dry mineral matter free; n.g. = not given.
a The subscript ex represents excluding hydrogen.
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