Trends in Food Science & Technology 51 (2016) 34-40

Contents lists available at ScienceDirect

Trends in Food Science & Technology

journal homepage: http://www.journals.elsevier.com/trends-in-food-scienceand-technology

Review

Recent advances and current status of the use of heat treatments in postharvest disease management systems: Is it time to turn up the heat?

Yuan Sui^a, Michael Wisniewski^b, Samir Droby^c, John Norelli^b, Jia Liu^{a,*}

^a School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China

^b U.S. Department of Agriculture – Agricultural Research Service (USDA-ARS), 2217 Wiltshire Road, Kearneysville, WV 25430, USA ^c Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan 50250, Israel

ARTICLE INFO

Article history Received 13 September 2015 Received in revised form 8 March 2016 Accepted 15 March 2016 Available online 16 March 2016

Keywords: Biocontrol veast Fungal pathogen Fruit Heat treatment -Omics Postharvest system

ABSTRACT

Background: Postharvest diseases of harvested commodities cause significant reductions in food availability and financial profits. Additionally, regulatory agencies are increasingly restricting or banning the postharvest use of synthetic chemical fungicides. This has increased the need to develop more ecofriendly approaches to postharvest disease management, such as heat treatments and biological control using antagonistic yeasts.

Scope and approach: The current review focuses on the physiological and molecular effects of heat treatments on the various components of postharvest disease management systems, namely, the commodity, fungal pathogen, and yeast biocontrol agent. The ability of postharvest heat treatments to induce host defense mechanisms and directly inhibit fungal pathogens is reviewed. The preconditioning of biocontrol yeasts by subjecting them to mild heat stress in order to induce cross-protection to abiotic stresses and to enhance biocontrol efficacy, is also discussed. The combined effects of postharvest heat treatments on disease control demonstrate its value as a key component of integrated approaches to postharvest disease management.

Key findings and conclusions: A review of the literature indicates that heat treatments can induce host resistance, inhibit pathogen development, and enhance the efficacy of biocontrol agents by making them more resilient to an array of environmental stresses. Therefore, heat treatments should be considered as a key component of an integrated approach to postharvest disease management. Further research will be needed, however, to understand how to effectively adapt this technology for use on different commodities, pathogens, and biocontrol agents.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Postharvest diseases of harvested fruit commodities by fungal pathogens result in significant economic losses (Prusky, Alkan, Mengiste, & Fluhr, 2013; Wilson & Wisniewski, 1989). In addition to economic considerations, some postharvest pathogens also produce fungal metabolites (e.g., mycotoxins) that pose a health risk to humans and can contaminate processed fruit products such as juice, baby food, and wine (Covarelli, Beccari, Marini, & Tosi, 2012: Sarubbi, Formisano, Auriemma, Arrichiello, & Palomba, 2016). The current management of postharvest diseases of fruits

primarily relies on the use of synthetic chemical fungicides. Strict government regulatory policies and strong consumer demand to reduce potentially harmful chemicals, however, have driven research efforts to explore and develop alternative means of postharvest disease management, including heat treatments and the use of biological control agents (Janisiewicz & Conway, 2010; Liu, Sui, Wisniewski, Droby, & Liu, 2013).

Heat treatments can be applied to fruit in several different ways: hot water dips, rinses or brushing, vapor heat and hot air (Fallik, 2004). These various approaches to heat treatment have all been demonstrated to be effective in managing postharvest diseases in a variety of fruits without impacting fruit quality (Table 1). The use of heat treatments in managing postharvest diseases can be both protective and curative (Chen, Cheng, Wisniewski, Liu, & Liu, 2015;

Corresponding author. E-mail address: jialiu1983@163.com (J. Liu).

Table 1

Representative studies of the use of heat treatments of fruits to manage postharvest diseases. HWD = Hot water dip; HWB = Hot water brushing; HA = Hot air treatment.

Fruit	Treatment	Optimal temp. (time)	Target pathogen	Reference
Apple (cv. Ingrid Marie)	Hot water rinsing Hot water dipping (HWD)	50–54 °C (3 min) 55 °C (20 or 25 s)	Neofabraea alba Neofabraea perennans Monilinia fructigena Colletotrichum acutatum	Maxin, Weber, Pedersen, & Williams, 2012a
Apple (cv. Elstar)	HWD	50 °C (3 min)	Phacidiopycnis washingtonensis Cladosporium spp. Neonectria galligena Botrytis cinerea	Maxin et al., 2012b
			Penicillium expansum	
Apple (cv. UltimaGala)	HWD	45 °C (10 min)	P. expansum	Spadoni et al., 2015
Peach (cv. Roig)	HWD	48 °C (12 min)	Monilinia laxa	Jemric et al., 2011
Peach (cv. Swelling)	Hot water brushing (HWB)	55 or 60 °C (20 s)	Monilinia. fructicola	Karabulut et al., 2002
Peach (cv. Royal Summer)	HWD	60 °C (20 s)	M. laxa	Spadoni et al., 2014
Peach (cv. June Prince)	HWD	40 °C (10 min)	M. fructicola	Liu et al., 2012
Nectarine (cv. Venus)	HWD	48 °C (6 min)	M. laxa	Jemric et al., 2011
Nectarine (cv. Flavortop)	HWB	55 or 60 °C (20 s)	M. fructicola	Karabulut et al., 2002
Citrus (cv. Jincheng 447#)	HWD	53 °C (2 min)	Penicillium italicum	Zhou et al., 2014
		45 of (2 min)	Penicillium digitatum	Harrist al. 2014
Mandarin (cv. Wuzishatangju)	HWD	45 °C (2 min)	P. italicum	Hong et al., 2014
			P. digitatum	
Cotours mandanin (m		$52 \circ C (2 min)$	Geotrichum citri-aurantii	Version at al. 2012
Satsuma mandarin (cv. Kamei)	HWD	52 °C (2 min)	P. italicum	Yun et al., 2013
Grapefruit (cv. Star Ruby)	HWB	62 °C (20 s)	P. digitatum	Pavoncello et al., 2001
Lemon (cv. Eureka)	HWD	52–53 °C (2 min)	P. digitatum	Nafussi et al., 2001
Pear (cv. d'Anjou)	High-pressure hot water washing	30 °C (414 kPa)	B.cinerea	Spotts et al., 2006
			P .expansum	
			Mucor piriformis	
Banana (cv. Buñgulan) Table grape (cv. Sultanina)	HWD	50 °C (20 min)	Colletotrichum musae	Alvindia, 2012
			Fusarium verticillioides	
			Lasiodiplodia theobromae	
	We want have the start and	50 5 °C (01 · ·	Thielaviopsis paradoxa	Lordalate e Alec d. 2002
Table grape (cv. Suitainia)	Vapor heat treatment	52.5 °C (21 or 24 min)	B. cinerea	Lydakis & Aked, 2003
		55 °C (18 or 21 min)		
Melon (cv. Cuilv)	HWD	45 °C (25 min)	Fusarium oxysporum	Sui et al., 2014
Muskmelon (cv. Yujinxiang)		43 °C (23 min) 53 °C (3 min)	Trichothecium roseum	Yuan et al., 2013
Mango (cv. 'Carabao')	HWD	53 °C (20 min)	Colletotrichum	Alvindia & Acda, 2015
		55°C (20 mm)	gloeosporioides	Aivindia & Acda, 2015
			L. theobromae	
Mango (cv. 'Shelly')	HWB	55 °C (15–20 s)	Alternaria alternata	Luria et al., 2014
			Phomopsis mangiferae	
Strawberry (cv. Aromas)	HWD	63 °C (12 s)	B. cinerea	Wszelaki & Mitcham, 2003
Kiwifruit (cv. Yate)	HWD	45 °C (10 min)	B. cinerea	Chen et al., 2015
. ,		· · ·	P. expansum	
Sweet cherry (cv. Hongdeng)	Hot air treatment (HA)	44 °C (114 min)	P. expansum	Wang et al., 2015
Loquat (cv. Jiefangzhong)	НА	38 °C (36 h)	C. acutatum	Liu et al., 2010
Chinese bayberry	HA	48 °C (3 h)	Leptographium abietinum	Wang et al., 2010
Papaya (cv. Sunrise)	HWD	54 °C (4 min)	C. gloeosporioides	Li et al., 2013

Liu et al., 2012; Sui, Droby, Zhang, Wang, & Liu, 2014). Protective refers to the application of a heat treatment before an infection is established. This effect influences mainly the level of inoculum load on fruit surface and indirectly results in reducing the chances for infection. On the other hand, curative refers to the application of a heat treatment after a pathogen has already infected fruit, such as occurs with quiescent infections or incipient infections established soon before or after harvest through surface injuries. Regardless of whether or not the application is protective or curative, the induction of disease resistance by heat treatments of harvested fruits has been reported to play a role in its efficacy. The development of high-through '-omics' technologies, such as transcriptomic, proteomic, and metabolomic studies, has provided new insights into how heat treatments induce biotic/abiotic stress resistance in harvested fruit commodities (Cruz-Mendívil et al., 2015; Lara et al., 2009; Luria et al., 2014; Spadoni, Guidarelli, Phillips, Mari, & Wisniewski, 2015; Yun et al., 2013).

Diseases caused by pathogenic fungi are the most abundant

postharvest diseases of fruit crops (Prusky et al., 2013). Heat treatments have the direct effect of inhibiting or even killing fungal pathogens, but the basis for this activity has not been fully elucidated. When fungi are exposed to abiotic stresses, including heat, undesirable levels of intracellular reactive oxygen species (ROS) will accumulate in a heat dose-specific manner. Consequently, oxidative damage to nucleic acids, proteins, and lipids occurs, resulting in the impairment of many cell functions which then leads to reduced viability (Hernández-Oñate & Herrera-Estrella, 2015; Liu et al., 2012; Zhao, Wisniewski, Wang, Liu, & Liu, 2014). Heat treatments that are the most lethal to fungal pathogens. however, can also impact fruit quality (e.g. enhanced ripening and senescence, phytotoxicity). Therefore, an integrated management approach utilizing a combination of different eco-friendly treatments, may be required to provide a viable alternative to synthetic, chemical fungicides (Janisiewicz & Conway, 2010; Smilanick, 2008).

Since Wilson and Wisniewski (1989) first outlined the concept of postharvest biocontrol utilizing antagonistic yeasts and its Download English Version:

https://daneshyari.com/en/article/2098521

Download Persian Version:

https://daneshyari.com/article/2098521

Daneshyari.com