Clinical Research

Protective Effect of Cytomegalovirus Reactivation on Relapse after Allogeneic Hematopoietic Cell Transplantation in Acute Myeloid Leukemia Patients Is Influenced by Conditioning Regimen

Shivaprasad Manjappa¹, Pavan Kumar Bhamidipati¹, Keith E. Stokerl-Goldstein², John F. DiPersio², Geoffrey L. Uy², Peter Westervelt², Jingxia Liu³, Mark A. Schroeder², Ravi Vij², Camille N. Abboud², Todd A. Fehniger², Amanda F. Cashen², Iskra Pusic², Meagan Jacoby², Srinidhi J. Meera², Rizwan Romee^{2,*}

¹ Division of Hospital Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri

² Section of Bone Marrow Transplant and Leukemia, Department of Medicine, Washington University School of Medicine, St. Louis,

Missouri

³ Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri

Article history: Received 27 August 2013 Accepted 2 October 2013

Key Words: CMV Acute myeloid leukemia Relapse Allogeneic hematopoietic cell transplantation Myeloablative Reduced intensity

ABSTRACT

Cytomegalovirus (CMV) reactivation after allogeneic hematopoietic cell transplant (allo-HCT) has been associated with a reduced risk of relapse in patients with acute myeloid leukemia (AML). However, the influence of the conditioning regimen on this protective effect of CMV reactivation after allo-HCT is relatively unexplored. To address this, we evaluated the risk of relapse in 264 AML patients who received T cell—replete, 6/6 HLA matched sibling or 10/10 HLA matched unrelated donor transplantation at a single institution between 2006 and 2011. Of these 264 patients, 206 received myeloablative (MA) and 58 received reduced-intensity conditioning (RIC) regimens. CMV reactivation was observed in 88 patients with MA conditioning and 37 patients with RIC. At a median follow-up of 299 days, CMV reactivation was associated with significantly lower risk of relapse in patients who received MA conditioning both in univariate (P = .01) and multivariate analyses (hazard ratio, .5246; P = .006); however, CMV reactivation did not significantly affect the risk of relapse in our RIC cohort. These results confirm the protective effect of CMV reactivation on relapse in AML patients after allo-HCT reported by previous studies but suggest this protective effect of CMV reactivation on relapse is influenced by the conditioning regimen used with the transplant.

© 2014 American Society for Blood and Marrow Transplantation.

et al. [7] found a modest protection against relapse in AML

INTRODUCTION

Cytomegalovirus (CMV) is a double-stranded DNA β herpes virus that is generally of no major clinical significance in healthy immunocompetent hosts but is responsible for significant morbidity and mortality in immunocompromised patients [1,2]. In patients with allogeneic hematopoietic cell transplant (allo-HCT), the incidence of CMV disease has been significantly reduced because of early detection of CMV reactivation and use of pre-emptive antiviral therapy. In spite of this, CMV reactivation remains a significant cause for morbidity and mortality among allo-HCT patients [3-5]. Interestingly, in a recent study by Elmaagacli et al. [6], early CMV pp65 antigenemia after allo-HCT was associated with reduced risk of relapse in acute myeloid leukemia (AML) patients. This study included a relatively homogeneous population who underwent fully matched allo-HCT with myeloablative (MA) conditioning. In a large cohort of patients, using CMV pp65 antigenemia monitoring, Green

S.M. and P.K.B. contributed equally to this study.

patients after allo-HCT, which included both MA and reduced-intensity conditioning (RIC) patients, but the cohorts were analyzed together with no subgroup analysis. Currently, the influence of conditioning regimen on this protective effect of CMV reactivation on the risk of relapse is relatively unexplored. Quantitative CMV PCR (qPCR) is a more sensitive assay compared with pp65 antigenemia for CMV detection and has been shown to assist in early detection of CMV reactivation after allo-HCT, leading to prompt pre-emptive treatment of CMV viremia [3,8,9]. Whether implementing CMV qPCR instead of pp65 antigenemia assay alters this association of reduced relapse risk with CMV reactivation after allo-HCT in AML patients is also currently not known. To address these questions, we retrospectively analyzed 264 AML patients who received T cell-replete, 6/6 HLA matched sibling or 10/10 HLA matched unrelated donor transplantation at a single institution between 2006 and 2011.

METHODS

Study Population

The study included a total of 382 consecutive AML patients who underwent allo-HCT at Washington University Medical Center at St. Louis between January 2006 and December 2011. This study was approved by the

Financial disclosure: See Acknowledgments on page 51.

^{*} Correspondence and reprint requests: Rizwan Romee, MD, Division of Oncology/BMT and Leukemia Section, Washington University School of Medicine, Campus Box 8007, 660 South Euclid Ave., St. Louis, MO 63110. *E-mail address:* rromee@dom.wustl.edu (R. Romee).

^{1083-8791/\$ -} see front matter © 2014 American Society for Blood and Marrow Transplantation. http://dx.doi.org/10.1016/j.bbmt.2013.10.003

Table 1	
Patient, Donor, and Transplant Characteristics	

	All Patients	Patients with CMV Reactivation	Patients without CMV Reactivation	Р
Number of patients	264	125	139	_
Median patient age,	_	56 (23-73)	51 (17-68)	.005
yr (range)				
Patient sex (%)				.805
Female	125 (47)	58 (46)	67 (48)	
Male	139 (53)	67 (54)	72 (52)	606
Donor sex (%)	00 (00)	40 (22)	40 (25)	.696
Female	88 (33)	40 (32)	48 (35)	
Male Donor patient cov	158 (67)	85 (68)	91 (65)	207
Fomalo malo	40 (15)	15 (12)	25 (19)	.597
Othor	40 (15)	15(12)	23 (16)	
Dopor_patient CMV	224 (03)	110 (88)	114 (82)	< 0001
status (%)				<.0001
Negative-negative	94 (36)	11 (9)	83 (60)	
Negative-positive	73 (28)	59 (48)	14 (10)	
Positive-negative	25 (9)	8(7)	17(12)	
Positive-positive	68 (26)	44 (36)	24 (17)	
Unknown	4(1)			215
Disease etiology	201 (70)	06 (77)	105 (75)	.215
De novo	201 (76)	96(77)	105 (75)	
Secondary Thorapy related	42 (16)	10(13)	26 (19)	
Transplant type (%)	21(0)	15(10)	ð (ð)	802
MRD	108 (41)	50 (40)	58 (12)	.005
MUD	156 (50)	75 (60)	30 (42) 81 (58)	
Conditioning regimen (%)	150 (55)	75(00)	01 (50)	
MA	206 (78)	88 (70)	118 (85)	005
RIC	58 (22)	37 (30)	21 (15)	1000
Disease classification	55 (22)	37 (30)	21 (10)	.089
by cytogenetics (%)				
Favorable	25 (9)	17 (14)	8 (8)	
Intermediate	157 (60)	70 (57)	87 (46)	
Poor	78 (30)	35 (29)	43 (44)	
Unknown	4(1)			
Disease status at				.339
transplant (%)				
CR1	135 (51)	69 (55)	66 (48)	
CR2	58 (22)	29 (23)	29 (21)	
Active disease	50 (19)	29 (15)	31 (22)	
Other	21 (8)	8 (6)	13 (9)	
aGVHD (%)				.446
Grades 0-I	164 (63)	81 (65)	83 (60)	
Grades II-IV	100 (37)	44 (35)	56 (40)	
cGVHD (%)			00 (0 l)	.602
No	172 (65)	84 (68)	88 (64)	
Yes	89 (34)	40 (32)	49 (36)	
Unknown	3(1)			000
AIG regimen (%)	40 (17)	20 (24)	10(12)	.009
Yes	46 (17)	30 (24)	16(12)	
NO Stars cell course	218 (83)	95 (76)	123 (88)	022
Deriphoral blood	240 (01)	115 (02)	125 (01)	.823
Peripiteral Diood	240 (91)	115 (92)	125 (91)	
DUIIC IIIdITOW	23 (9)	10(8)	13 (9)	022
MTV MME tograli	20 (11)	21 (17)	0 (6)	.023
MTX tacrolimus	215 (21)	21 (17) 97 (78)	9 (0) 118 (85)	
Other*	19(7)	7 (5)	12 (9)	
Stilei	15(7)	, (3)	12 (3)	

MRD indicates matched related donor; MUD, matched unrelated donor; CR, complete remission; MTX, methotrexate; MMF, mycophenolate mofetil.

* Other includes cyclosporine, MTX, sirolimus, and tacrolimus.

Institutional Review Board of Washington University School of Medicine, St. Louis.

Patient demographics and transplant characteristics were prospectively entered into the Washington University School of Medicine, Blood and Marrow transplant database. Of the 382 patients, 264 were selected for the analysis based on following eligibility criteria: (1) 10/10 match at HLA loci A, B, C, DRB1, and DQB1 by high-resolution genotyping in unrelated transplantation [10] and by low resolution [11] in related donor transplantation; (2) use of unmodified donor stem cells; (3) no use of prophylactic donor lymphocyte infusion during the post-transplantation course among patients

Table 2

Patient, Donor, and Transplant Characteristics by Intensity of Conditioning Regimen

8				
	All Patients	MA	RIC	Р
Number of patients	264	125	139	_
Median patient age	_	50 (17-68)	62 (21-73)	< 0001
vr (range)		50 (17 00)	02 (21 73)	1.0001
Patient sey (%)				10
Female	125 (47)	08 (48)	27 (47)	1.0
Malo	123(47) 120(52)	30 (40) 109 (52)	21 (47)	
	129 (22)	108 (32)	51 (55)	422
Ecomolo	00 (22)	66 (69)	22 (20)	.452
Female	88 (33) 176 (67)	140 (22)	22 (38)	
Male	1/6(6/)	140 (32)	36 (62)	766
Donor-patient sex	40 (15)	20 (14)	11 (10)	./55
Female-male	40 (15)	29 (14)	11 (19)	
Other	224 (85)	177 (86)	47 (81)	
Donor-patient CMV				.0501
status (%)				
Negative-negative	94 (36)	82 (40)	12 (21)	
Negative-positive	73 (28)	54 (27)	19 (34)	
Positive-negative	25 (9)	17 (8)	8 (14)	
Positive-positive	68 (26)	51 (25)	17 (30)	
Unknown	4(1)			
Disease etiology				.443
De novo	201 (76)	158 (77)	43 (74)	
Secondary	42 (16)	30 (14)	12 (12)	
Therapy related	21 (8)	18 (9)	3 (5)	
Transplant type (%)				.291
MRD	108 (41)	88 (43)	20 (34)	
MUD	156 (59)	118 (57)	38 (66)	
CMV reactivation	. ,			.005
Yes	206 (78)	88 (43)	37 (64)	
No	58 (22)	118 (57)	21 (36)	
Disease classification by	()	()	()	.154
cytogenetics (%)				
Favorable	25 (9)	23 (11)	2 (3)	
Intermediate	157 (60)	118 (58)	39 (67)	
Poor	78 (30)	61 (30)	17 (29)	
Unknown	4(1)	01 (50)	17 (23)	
	4(1)			012
transplant (%)				.012
	125 (51)	100 (48)	25 (60)	
CR2	133 (31)	100 (48)	15 (00)	
Activo disease	43(22)	43 (21)	2 (5)	
Active disease	30 (19) 31 (0)	47 (25)	5 (5)	
	21 (8)	16 (8)	5 (9)	015
aGVHD (%)	104 (02)	120 (50)	44 (70)	.015
Grades U-I	164 (63)	120 (58)	44 (76)	
Grades II-IV	100 (37)	86 (42)	14 (24)	
cGVHD (%)				.273
No	172 (65)	130 (64)	42 (72)	
Yes	89 (89)	73 (36)	16 (28)	
Unknown	3 (1)			
ATG regimen (%)				<.0001
Yes	46 (17)	2(1)	44 (76)	
No	218 (83)	204 (99)	14 (24)	
Stem cell source				.429
Peripheral blood	240 (91)	185 (90)	55 (95)	
Bone marrow	23 (9)	20 (10)	3 (5)	
Missing information	1			
Immune prophylaxis				<.0001
MTX, MMF, tacrolimus	30 (11)	7 (3)	23 (40)	
MTX, tacrolimus	215 (81)	181 (88)	34 (58)	
Other*	19 (7)	18 (9)	1 (2)	

MRD indicates matched related donor; MUD, matched unrelated donor; CR, complete remission; MTX, methotrexate; MMF, mycophenolate mofetil. * Other includes cyclosporine, MTX, sirolimus, and tacrolimus.

without leukemic relapse; (4) bone marrow biopsy done within 30 days before transplantation to determine the disease status at the time of transplantation; and (5) recipients of a second transplant were excluded from the study group as prior transplantation.

The type of conditioning regimen patients received was classified according to consensus definition of conditioning regimen intensity [12]. For our study, RIC and non-MA regimens were grouped together under the RIC cohort. Download English Version:

https://daneshyari.com/en/article/2102368

Download Persian Version:

https://daneshyari.com/article/2102368

Daneshyari.com