ST SEVIER

Contents lists available at SciVerse ScienceDirect

Fuel Processing Technology

journal homepage: www.elsevier.com/locate/fuproc

Enhanced desulfurizing flotation of high sulfur coal by sonoelectrochemical method

Hong-Xi Zhang ^{a,*}, Xiao-Yan Ma ^a, Xian-Shu Dong ^b, Zhi-Zhong Wang ^c, Hong-Jin Bai ^a

- ^a College of Life Science, Tarim University, Alaer 843300, Xinjiang, China
- ^b College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- ^c College of Chemistry & Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China

ARTICLE INFO

Article history:
Received 20 December 2010
Received in revised form 23 July 2011
Accepted 4 September 2011
Available online 7 October 2011

Keywords: Sonoelectrochemistry Sonocavitation Enhanced flotation Desulfurization

ABSTRACT

Enhanced desulfurizing flotation of high sulfur coal was investigated using the sonoelectrochemical method. The supporting electrolyte used in this process was calcium hydroxide and the additive was anhydrous ethanol. The effects of treatment conditions on desulfurization were studied by a single-factor method. The conditions include anhydrous ethanol concentration, sonoelectrolytic time, current density, and ultrasound intensity. For the coal sample with a particle size of -0.076 mm, the optimal experimental conditions achieved for anhydrous ethanol, sonoelectrolytic time, current density, and ultrasound intensity are 2.1 mol/L, 20 min, 15×10^{-3} A/cm², and 1.2 W/cm², respectively. Optimal conditions cause a sulfur reduction of up to 75.4%. The raw and treated coals were analyzed by infrared spectroscopy and a chemical method. Pyritic sulfur, organic sulfur, and ash are partially removed. Compared with enhanced flotation by ultrasound or electrochemistry, desulfurizing flotation of high sulfur coal by sonoelectrochemistry is an effective technology.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The increasing demand for coal has led to more extensive mining of coal seams, so that the mined coal has high sulfur content. Reducing sulfur content in coal prior to its use in many applications is essential. To this end, researchers have focused on searching for simple, economic, and efficient desulfurization methods as this has become an issue of worldwide concern. The process of enhanced desulfurizing flotation of coal using electrochemistry involves simple technology; this process has been reported in several published articles [1-5]. The method efficiently removes pyritic and organic sulfur, as well as ash. However, the technique still generates an un-ideal vield of clean coal. Some studies have reported a form of energy, ultrasound waves, that has been increasingly applied in desulfurizing flotation [6-9]. Ultrasound can enhance clean coal yield and promote the separation of pyrite in high sulfur coal, factors that are favorable for flotation desulfurization. The combination of electrochemical flotation and ultrasonic flotation methods presents promising prospects for effective desulfurization of coal.

In recent years, the integration of electrochemistry and sonochemistry has given rise to an interdisciplinary method called sonoelectrochemistry. Research in this area has attracted considerable attention, and some of the advantages reported in literature include the improvement of electrochemical progress while obtaining results superior to those

obtained by electrochemistry alone [10–13]. Studies on a variety of areas including electroanalysis, electroplating, electroorganic synthesis, electropolymerization, and pollutant degradation in emulsion have used sonoelectrochemical methods. However, few reports on enhanced desulfurizing flotation of coal by sonoelectrochemistry have been published. We believe that research on the feasibility of such application is necessary. The combination of ultrasound technology and electrochemistry has also been extensively applied in the industry, leading us to expect that desulfurizing flotation of high sulfur coal via sonoelectrochemistry will find potential industrial applications.

2. Experimental

2.1. Materials and reagents

High sulfur coal from the Tunlan coal plant in Shanxi, China was used for the experiment. By screening, the coal was separated into samples of different granulometry. For the coal sample with a particle size of -0.076 mm, the contents of sulfur and ash were much higher than those reflected in the granulometry of the other samples. In the present study, coal with a granulometry of -0.076 mm was chosen as the experimental coal sample. The date at which proximate analysis was conducted and the sulfur content of the coal are listed in Table 1. The concentrations of slurry and supporting electrolyte were 96 and 2.0 g/L, respectively. Other reagents used in this experiment were calcium hydroxide (AR grade), anhydrous ethanol (AR grade), kerosene as the flotation reagent (Chemical Pure, collector), and sec-n-octyl alcohol (CP, frother).

^{*} Corresponding author. Tel.: +86 997 4681613; fax: +86 997 4681612. E-mail address: zhanghongxi3@163.com (H.-X. Zhang).

Table 1
Proximate analysis and sulfur content (W%, ad) of Tunlan coal.

Proximate analysis				Sulfur content			
Moisture	Ash	Volatile matter	Calorific value (kJ/kg)	Total	Pyritic	Sulfate	Organic
1.56	22.35	18.16	25,022	6.12	3.53	1.08	1.51

2.2. Instruments

Electrolytic power was provided by a DH1722 DC-regulated power supply. Graphite (97.4 cm²) and stainless steel (180.3 cm²) were used as the anode and cathode, respectively; the electrolytic trough was set at 300 mL cup. The experimental scheme is presented in Fig. 1, and the flotation process and conditions are shown in Fig. 2.

Other equipment used in the study are an SK250HP ultrasonic cleaner (59 kHz, 250 W, ultrasonic irradiation area: $203.3~\rm cm^2$), XFGC-80 flotation cell, HXZ-S3 sulfur determinator, and Shimadzu FTIR8400S (KB_r: $\rm coal = 200:1$).

2.3. Experimental method

Specific amounts of supporting electrolyte, additive, and coal sample were placed in the electrolytic trough, to which distilled water was added to obtain a volume of 250 mL. Under a certain current density, ultrasonic intensity, and agitation rate (300 rpm), the slurry was subjected to sonoelectrolysis for a preset duration at room temperature. Subsequently, the slurry was immediately transferred to the flotation column. The floating coal was washed, dried in vacuum at 80 °C for 4 h, and then subjected to sulfur determination.

The calculations of sulfur and ash reduction are expressed as [14]

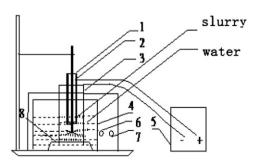
sulfur reduction (wt.%) =
$$100[x_1 - x_2(m_2/m_1)]/x_1$$
 (1)

$$ash\ reduction\ (wt.\%) = 100[y_1 - y_2(m_2/m_1)]/y_1 \eqno(2)$$

where

X1

 m_1 is the weight of the original dried sample,


m₂ is the weight of the original dried sample after leaching,

denotes the sulfur percentage in the original sample,

x₂ represents the sulfur percentage in the coal obtained from leaching,

y₁ is the ash percentage in the original sample, and

y₂ denotes the ash percentage in the coal obtained from leaching.

Fig. 1. Test device of sonoelectrochemistry. 1— regular speed stirrer. 2— graphite tube (anode). 3— electrolytic bath(cathode). 4— SK250HP ultrasonic cleaner. 5— DH1722 DC-regulated power supply. 6— ultrasonic output power knob. 7— ultrasonic output time knob. 8— hollow stents.

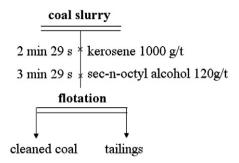
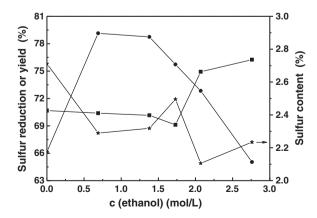


Fig. 2. Flotation experimental processing and conditions.


3. Results and discussion

3.1. Effect of ethanol concentration on sulfur reduction

The effects of sulfur reduction, clean coal yield and sulfur content plotted against ethanol concentration are presented in Fig. 3. With increasing ethanol concentration, sulfur content initially exhibits a gradual reduction to a minimum, and then rapidly increases. Before the ethanol concentration reaches 0.7 mol/L, the clean coal yield continues to rapidly increase. This phenomenon can be attributed to the presence of specific numbers of ethanol molecules, which can improve coal surface wettability and generate a favorable condition for clean coal recovery. However, as ethanol concentration reaches 0.7 mol/L, the hydrophilicity of the coal surface is enhanced and the clean coal yield begins to diminish. When ethanol concentration reaches 2.8 mol/L, the clean coal yield drops to 65.0%. This low yield is negligible for desulfurizing flotation. Therefore, the optimal ethanol concentration is 2.1 mol/L. These results indicate that ethanol concentration has a significant effect on clean coal yield, in which a specific amount of ethanol proves favorable for enhanced desulfurizing flotation by sonoelectrochemistry.

3.2. Effect of sonoelectrolytic time on sulfur reduction

Fig. 4 depicts the sulfur reduction, clean coal yield and sulfur content plotted against sonoelectrolytic time. With time progression, the sulfur reduction rate rapidly increases to a maximum, and then slowly declines. Initially, several groups containing sulfur are absorbed on the coal surface. The sulfur on the coal surface is easy to remove by the electrochemical oxidation of the anode. As time progresses, however, the reaction comes to the interior coal particles instead of on the surface. Therefore, sulfur removal becomes difficult at this point, and sulfur reduction proceeds more slowly. When a sonoelectrolytic time of about 20 min elapses, part of the inorganic and organic sulfur may have been converted into

Fig. 3. Effects of ethanol concentration on sulfur reduction, clean coal yield and sulfur content. Sonoelectrolytic time: 20 min; current density: $10 \times 10^{-3} \text{ A/cm}^2$; ultrasonic intensity: 1.23 W/cm^2 ; (\blacksquare) yield; (\blacksquare) sulfur reduction; (\bigstar) sulfur content.

Download English Version:

https://daneshyari.com/en/article/210544

Download Persian Version:

https://daneshyari.com/article/210544

Daneshyari.com