

Tumor Suppression by Phospholipase C-β3 via SHP-1-Mediated Dephosphorylation of Stat5

Wenbin Xiao,¹ Hong Hong,¹ Yuko Kawakami,¹ Yuko Kato,² Dianqing Wu,^{3,4} Hiroki Yasudo,¹ Akiko Kimura,⁵ Hiromi Kubagawa,⁶ Luigi F. Bertoli,⁸ Randall S. Davis,⁷ Luan A. Chau,⁹ Joaquin Madrenas,⁹ Cyrus C. Hsia,¹⁰ Anargyros Xenocostas, 10 Thomas J. Kipps, 11 Lothar Hennighausen, 5 Atsushi Iwama, 2 Hiromitsu Nakauchi, 12 and Toshiaki Kawakami^{1,*}

University of Alabama, Birmingham, AL 35294, USA

*Correspondence: toshi@liai.org DOI 10.1016/j.ccr.2009.05.018

SUMMARY

Given its catalytic activity to generate diacylglycerol and inositol 1,4,5-trisphosphate, phospholipase C (PLC) is implicated in promoting cell growth. However, we found that PLC-β3-deficient mice develop myeloproliferative disease, lymphoma, and other tumors. The mutant mice have increased numbers of hematopoietic stem cells with increased proliferative, survival, and myeloid-differentiative abilities. These properties are dependent on Stat5 and can be antagonized by the protein phosphatase SHP-1. Stat5-dependent cooperative transformation by active c-Myc and PLC- β 3 deficiency was suggested in mouse lymphomas in PLC- β 3^{-/-} and in $E\mu$ -myc;PLC- $\beta 3^{+/-}$ mice and human Burkitt's lymphoma cells. The same mechanism for malignant transformation seems to be operative in other human lymphoid and myeloid malignancies. Thus, PLC-B3 is likely a tumor suppressor.

INTRODUCTION

The production and lineage commitment of hematopoietic cells is controlled by the actions of a multitude of cytokines, growth factors, and hormones (Kondo et al., 2003). Cell surface receptors bound by these ligands activate several signaling pathways including the Jak-Stat pathway. This pathway plays a crucial role in a number of biological functions by activating transcription of various target genes (Levy and Darnell, 2002; O'Shea et al., 2002; Schindler et al., 2007). Cytokine stimulation activates Jak kinases through transphosphorylation and results in tyrosine phosphorylation of receptor sites, Stats, and other substrates.

SIGNIFICANCE

Many hematopoietic malignancies depend on the activity of Stat5 transcription factor. Here, we report a novel Stat5suppressive mechanism by which PLC-β3 augments dephosphorylating activity of SHP-1 toward Stat5 by recruiting SHP-1 and Stat5 to its C-terminal sequence. Abrogation of this suppression leads to myeloproliferative disease, lymphoma, and other types of cancer in $PLC-\beta 3^{-/-}$ mice. $PLC-\beta 3$ deficiency or downregulation appears to cooperate with c-Myc to induce B cell lymphoma in mice and humans. The same mechanism may be operative in human myeloid and lymphoid tumors. Therefore, the adaptor function of PLC-β3 seems essential to protect the hematopoietic and nonhematopoietic systems from tumor development.

¹Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA

²Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan

³Program for Vascular Biology and Therapeutics

⁴Department of Pharmacology

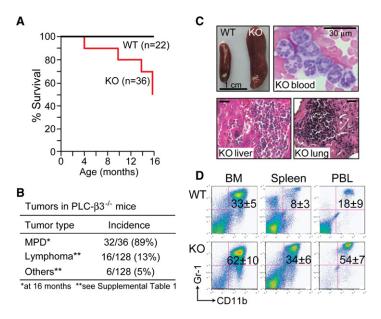
Yale University School of Medicine, New Haven, CT 06520, USA

⁵Laboratory of Genetics and Physiology, National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA

⁶Department of Pathology

⁷Department of Medicine

⁸Brookwood Medical Center, Birmingham, AL 35209, USA


⁹Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5K8, Canada

¹⁰Department of Medicine, University of Western Ontario, London, ON N6A4G5, Canada

¹¹Department of Internal Medicine, University of California, San Diego, La Jolla, CA 92093, USA

¹²Laboratory of Stem Cell Therapy, Center of Experimental Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639,

Following tyrosine phosphorylation, Stats homo- or heterodimerize, translocate to the nucleus, and activate gene expression through sequence-specific response elements.

To date, seven mammalian Stat family members have been identified: Stats 1, 2, 3, 4, 5A, 5B, and 6; Stat5 is encoded by two recently duplicated genes, Stat5A and Stat5B, with ∼96% sequence identity (Mui et al., 1995). Stat5 plays a crucial role in early hematopoiesis-Stat5A and Stat5B doubly disrupted mice displayed a profound defect in competitive repopulation of hematopoiesis (Bunting et al., 2002; Snow et al., 2002). The commitment of embryonic stem cells to hematopoietic cells is augmented by a Stat5-mediated signal (Kyba et al., 2003). Stat5 also plays a role in myeloid cell proliferation and differentiation (llaria et al., 1999). Constitutive activation of Stat5 in human cord blood CD34⁺ cells enhances their capacity to repopulate NOD/SCID mice and promotes erythroid differentiation (Schuringa et al., 2004). Constitutively active Stat5 promotes self-renewal, proliferation, and survival of mouse hematopoietic stem cells (HSC) and induces a lethal myeloproliferative disease (MPD) in mice (Kato et al., 2005).

Stat signals are downregulated by three well-characterized mechanisms: dephosphorylation, nuclear export, and suppressor of cytokine signaling (SOCS) feedback inhibition (Shuai, 2000; Tanaka et al., 2005). SOCS proteins bind either activated Jak proteins or cytokine receptors to inhibit Jak activity (Alexander and Hilton, 2004). Several protein tyrosine phosphatases have been reported to dephosphorylate either Jak and/or Stat proteins. For example, Jak2 interacts with SHP-1 and may be dephosphorylated by SHP-1 (Jiao et al., 1996; Klingmuller et al., 1995).

Phospholipase C- β (PLC- β) is a small family of enzymes that can produce diacylglycerol and IP $_3$ downstream of heterotrimeric G proteins (Rhee, 2001). As diacylglycerol can activate protein kinase C (PKC), and IP $_3$ can mobilize Ca $^{2+}$, PLC- β is implicated in promoting cell proliferation. PLC- β directly interacts with GTP-bound G α subunits, leading to its catalytic activation. The four isoforms of PLC- β (β 1- β 4) show different tissue expression specificity and heterotrimeric G protein regulation profiles. PLC- β 1 and PLC- β 3 are expressed in a wide range of tissues

Figure 1. $PLC-\beta 3^{-/-}$ Mice Develop MPD, Lymphoma, and Other Tumors

- (A) Survival analysis.
- (B) Summary of tumors developed in *PLC-\beta3*^{-/-} mice.
- (C) Hematologic analysis of 10-month-old PLC- $\beta3^{-/-}$ mice. Splenomegaly in PLC- $\beta3^{-/-}$ mice (top left) was associated with effaced splenic architecture (data not shown). Increased mature granulocytes in PLC- $\beta3^{-/-}$ mice were shown by blood smear (top right) and hematoxylin and eosin staining of lung and liver sections (bottom). Bars in tissue sections indicate 30 μ m.
- (D) Flow cytometric analysis of nucleated cells in BM, spleen, and peripheral blood leukocytes (PBL) from 10-month-old mice (n = 16). Granulocytes (CD11b⁺/Gr-1⁺; percentages \pm SD shown) were increased in these organs of aged PLC- $\beta3^{-/-}$ mice.

and cell types, while PLC- $\beta 2$ and PLC- $\beta 4$ are expressed only in hematopoietic and neuronal tissues, respectively. PLC- $\beta 2$ and PLC- $\beta 3$ can also be activated by $\beta \gamma$ subunits of the $G\alpha_{i/o}$ family of G proteins (Camps et al., 1992; Katz et al., 1992; Lee et al., 1993). Consistent with their roles in G protein-coupled receptor signaling, chemokine-induced IP₃ production, Ca²⁺ signaling, and migration

are reduced in $PLC-\beta 2^{-/-}$ and $PLC-\beta 2^{-/-}$; $PLC-\beta 3^{-/-}$ neutrophils (Li et al., 2000) and T cells (Bach et al., 2007). However, little is known about the role of these $PLC-\beta$ isoforms in hematopoiesis or tumorigenesis. Here we have studied the role of $PLC-\beta 3$ in these processes using $PLC-\beta 3^{-/-}$ mice.

RESULTS

PLC- β 3-Deficient Mice Develop Various Tumors Including MPD and Lymphoma

PLC-β3 deficiency led to a premature death in mice (Figure 1A). Fifty percent (18 of 36 mice) of *PLC-\beta3*^{-/-} mice died within an observation period of 16 months, in contrast with 100% survival of wild-type (WT) mice. By the age of 16 months, most $PLC-\beta 3^{-/-}$ mice in this cohort exhibited splenomegaly (Figure 1B-C), the incidence of which reached 89% when prematurely dead mice with this abnormality were included. The enlarged spleens had effaced architecture characterized by markedly increased myeloid cells and some erythroid cells, indicative of extramedullary hematopoiesis (data not shown). Livers and lungs also had foci composed of myeloid cells (Figure 1C). Dramatic increases in CD11b+Gr-1+ mature granulocytes in bone marrow (BM), spleen, and peripheral blood from these mice were observed (Figures 1C and 1D and see Tables S1 and S2 available with this article online). Microbiological examinations showed no indications of bacterial infection in the diseased mice, and antibiotic treatments did not affect the number of granulocytes (data not shown). Therefore, these hematologic findings were consistent with the diagnosis of MPD (Kogan et al., 2002), unlike myelodysplastic syndrome that is frequently associated with anemia.

During a 2 year observation period, three in another cohort of 16 PLC- $\beta3^{-/-}$ mice with increased granulocytes developed anemia (hematocrits of 11%, 16%, and 22%) with increased numbers of blast cells in their BM (32%, 35%, and 45%, respectively). This result suggests that the MPD can evolve to accelerated and blast-crisis stages, similar to human chronic myelogenous leukemia (CML) (Sawyers, 1999). Gross and histologic

Download English Version:

https://daneshyari.com/en/article/2107447

Download Persian Version:

https://daneshyari.com/article/2107447

<u>Daneshyari.com</u>