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SUMMARY

The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma
multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Pro-
neural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to estab-
lish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1,
and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene
signatures of normal brain cell types show a strong relationship between subtypes and different neural line-
ages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Clas-
sical subtype and no benefit in the Proneural subtype. We provide a framework that unifies transcriptomic
and genomic dimensions for GBM molecular stratification with important implications for future studies.

SIGNIFICANCE

This work expands on previous glioblastoma classification studies by associating known subtypes with specific alterations
in NF1 and PDGFRA/IDH1 and by identifying two additional subtypes, one of which is characterized by EGFR abnormalities
and wild-type p53. In addition, the subtypes have specific differentiation characteristics that, combined with data from
recent mouse studies, suggest a link to alternative cells of origin. Together, these data provide a framework for investigation
of targeted therapies. Temozolomide and radiation, a common treatment for glioblastoma, has demonstrated a significant
increase in survival. Our analysis illustrates that a survival advantage in heavily treated patients varies by subtype, with Clas-
sical or Mesenchymal subtypes having significantly delayed mortality that was not observed in the Proneural subtype.
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INTRODUCTION

Glioblastoma multiforme (GBM) is the most common form of

malignant brain cancer in adults. Patients with GBM have

a uniformly poor prognosis, with a median survival of one year

(Ohgaki and Kleihues, 2005); thus, advances on all scientific

and clinical fronts are needed. In an attempt to better understand

glioblastoma, many groups have turned to high-dimensional

profiling studies. Several examples include studies examining

copy number alterations (Beroukhim et al., 2007; Ruano et al.,

2006) and gene expression profiling studies identifying gene

signatures associated with EGFR overexpression, clinical

features, and survival (Freije et al., 2004; Liang et al., 2005; Mis-

chel et al., 2003; Murat et al., 2008; Nutt et al., 2003; Phillips et al.,

2006; Shai et al., 2003; Tso et al., 2006).

The Cancer Genome Atlas (TCGA) Research Network has

been established to generate the comprehensive catalog of

genomic abnormalities driving tumorigenesis. TCGA provided

a detailed view of the genomic changes in a large GBM cohort

containing 206 patient samples. Sequence data of 91 patients

and 601 genes were used to describe the mutational spectrum

of GBM, confirming previously reported TP53 and RB1 muta-

tions and identifying GBM-associated mutations in such genes

as PIK3R1, NF1, and ERBB2. Projecting copy number and

mutation data on the TP53, RB, and receptor tyrosine kinase

pathways showed that the majority of GBM tumors harbor

abnormalities in all of these pathways, suggesting that this is

a core requirement for GBM pathogenesis.

Currently, only a few molecular factors show promise for prog-

nosis or prediction of response to therapy (Curran et al., 1993;

Kreth et al., 1999; Scott et al., 1998). An emerging prognostic

factor is the methylation status of the MGMT promoter (Hegi

et al., 2005). The TCGA GBM study (Cancer Genome Atlas

Research Network, 2008) suggested that MGMT methylation

shifts the GBM mutation spectrum in context of alkylating treat-

ment, a finding with potential clinical implications. The inability to

define different patient outcomes on the basis of histopatholog-

ical features illustrates a larger problem in our understanding of

the classification of GBM.

In the current study, we leverage the full scope of TCGA data

to paint a coherent portrait of the molecular subclasses of GBM.

RESULTS

Consensus Clustering Identifies Four Subtypes of GBM
Factor analysis, a robust method to reduce dimensionality, was

used to integrate data from 200 GBM and two normal brain

samples assayed on three gene expression platforms (Affymetrix

HuEx array, Affymetrix U133A array, and Agilent 244K array) into

a single, unified data set. Using the unified data set, we filtered

the data to 1740 genes with consistent but highly variable

expression across the platforms. Consensus average linkage

hierarchical clustering (Monti et al., 2003) of 202 samples and

1740 genes identified four robust clusters, with clustering

stability increasing for k = 2 to k = 4, but not for k > 4 (Figures

1A and 1B). Cluster significance was evaluated using SigClust

(Liu et al., 2008), and all class boundaries were statistically signif-

icant (Figure 1C). Samples most representative of the clusters,

hereby called ‘‘core samples’’ (n = 173 of 202), were identified

on the basis of their positive silhouette width (Rousseeuw,

1987), indicating higher similarity to their own class than to any

other class member (Figure 1D). Genes correlated with each

subtype were selected using SAM and ROC methods. ClaNC,

a nearest centroid-based classifier that balances the number

of genes per class, identified signature genes for all four

subtypes (Dabney, 2006). An 840 gene signature (210 genes

per class) was established from the smallest gene set with the

lowest cross-validation (CV) and prediction error. Each of the

signatures was highly distinctive (Figure 2A). Signatures and

gene lists for all analyses are available at http://tcga-data.nci.

nih.gov/docs/publications/gbm_exp/.

These analyses were repeated on the three individual data

sets, demonstrating that unifying the data improved CV error

rates (see Figures S1A–S1E, available with this article online).

Limiting the analysis to core samples reduced the CV error rate

from 8.9% to 4.6%, validating their use as most representative

of the cluster (Figures S1A and S1B). Importantly, our findings

did not correlate with confounding factors well known to interfere

with gene expression analysis, such as batch, sample purity, or

sample quality (Table 1 and Figure S2). An exception was the

sample collection center. However, the collection centers drew

from different patient populations, and the relationship to

subtype is largely the result of strong clinical differences in their

patients, most notably age, as discussed below.

Validation of Subtypes in an Independent Data Set
An independent set of 260 GBM expression profiles was

compiled from the public domain to assess subtype reproduc-

ibility (Beroukhim et al., 2007; Murat et al., 2008; Phillips et al.,

2006; Sun et al., 2006). The subtype of TCGA samples was

predicted using ClaNC, and data were visualized using the 840

classifying gene list (Figure 2A). Applying a similar ordering in

the validation set clearly recapitulated the gene sample groups

(Figure 2B). Importantly, the four subtypes were similarly pro-

portioned in the validation and TCGA data set, as well as in all

four individual validation data set cohorts (Figures S2G–S2L).

Accounting for differences in sample size and analytic tech-

niques, obvious concordance was seen between our classifica-

tion and the results from earlier studies (Supplemental Experi-

mental Procedures and Figure S3). To relate tumor subtype to a

relevant model system, we obtained gene expression data from

a collection of xenografts. The xenografts were established by

direct implant of patient surgical specimens in athymic null/null

mice (Hodgson et al., 2009). Proneural, Classical, and Mesen-

chymalsubtypeswerealso reflected in the xenografts (Figure2C).

In contrast, attempts to detect comparable transcriptional

subtypes in immortalized cell lines were uninformative (data not

shown).

Functional Annotation of Subtypes
Subtype names were chosen on the basis of prior naming and

the expression of signature genes: Proneural, Neural, Classical,

and Mesenchymal. To get insight into the genomic events differ-

entiating the subtypes, we used copy number data of 170 core

samples that were recently described by the Cancer Genome

Atlas Research Network (2008). Sequence data were available

for 601 genes on 116 core samples; 73 samples were previously

described. Fourteen amplifications and seven homozygous or
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