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Introduction
While microarray studies have achieved much, the immense 
potential of large-scale genomics research to change the man-
agement of human disease remains to be fully realized. Practical 
constraints are imposed by the cost of genomic studies and dif-
ficulties in obtaining sufficient, well-annotated, and representative 
samples, particularly for human studies. While genomic technolo-
gy is continuously improving in reliability and information content, 
comparing and combining data from different genomic platforms 
remains problematic. Most genomic experiments involve thou-
sands of variables (such as gene expression values) measured 
against tens or, at best, hundreds of cases. False positive results 
and data overfitting are significant problems under these circum-
stances. Despite these challenges, validated findings have been 
made, and the first of these have become commercially avail-
able in some countries (Paik et al., 2004). Here, we provide an 
overview of the many complexities that face large-scale clinically 
oriented cancer genomic studies, with the goal of assisting read-
ers and researchers in understanding and anticipating obstacles. 
We begin by examining the role of confounding and bias in study 
design, discuss technology-related limitations and statistical and 
analytical obstacles, and finish with several clinical considera-
tions. We also provide recommendations for circumventing prob-
lems that have beset previous studies (Table 1).

Study design
The main objectives of most large-scale cancer genomics stud-
ies are to search for new molecular subtypes of cancer (class 
discovery); identify differentially expressed genes between pre-
defined cancer classes, such as short- versus long-term survivors 
(class comparison); or predict membership to predefined cancer 
classes (class prediction) (Golub et al., 1999; Simon et al., 2003). 
Class discovery genomic studies have succeeded in identifying 
several important and reproducible molecular cancer subtypes. 
For example, the work of Perou et al. (1999) has identified several 
molecular subtypes of breast cancer, confirming the long held 
notion that breast cancer is comprised of more than one biological 
entity. These subtypes, with distinct gene expression profiles and 
patterns of oncogene activation or tumor suppressor loss, have 
been validated in independent data sets and correlated to clinical 

outcome (Sorlie et al., 2001, 2003). Likewise, class comparison 
studies have generated insights into the molecular relationships 
between other cancer subtypes. One example is the comparison 
of gene expression profiles in ovarian cancers from women with 
inherited BRCA1 and BRCA2 mutations to those with sporadic 
cancer (Jazaeri et al., 2002). It appears that the BRCA-associ-
ated pathways are also involved in sporadic cases of ovarian 
cancer, leading to speculation about the role of genetic and epi-
genetic alterations in BRCA genes and downstream regulators. 
Our own study has been able to compare distinct histological 
subtypes of gastric cancer, highlighting transcriptional differences 
between the intestinal and diffuse histologies (Boussioutas et al., 
2003). Many researchers have attempted to springboard from 
class comparison to class prediction studies in order to develop 
valid molecular profiles with potential clinical applications. One 
class comparison study of histological grade 1 and grade 3 breast 
cancers has led to the identification of a gene expression profile 
that can be used to further classify histological grade 2 tumors 
into high versus low risk of recurrence categories, although the 
results of this study require further validation (Sotiriou et al., 
2006). Despite the successes, challenges have been identified 
that affect all three study designs. Practical constraints in obtain-
ing human cancer tissue have led many genomics studies to use 
a limited number of retrospectively collected samples. Therefore, 
the cases may not have been collected in a standardized fashion, 
and the observations may have been made from uncontrolled 
systems. Under these circumstances, data confounding and bias 
are particularly relevant.

Confounding refers to a factor that distorts the true relation-
ship between the study variables of interest (Potter, 2003). A 
confounder is related to the outcome of interest, yet remains 
extraneous to the study question and is unequally distributed 
among the comparator groups. Confounding is important in can-
cer molecular profiling, especially for class comparison and class 
prediction studies. For example, in a study designed to derive 
a molecular predictor of chemotherapy responders and nonre-
sponders, confounding can occur if other therapeutic modali-
ties (e.g., surgery and radiotherapy) are not equally distributed 
amongst the two groups. In this situation, attributing a difference 
in gene expression to the characteristics of the cancer may be 
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inappropriate. To correct the problem, patients should be bal-
anced for known confounders; however, if the study sample size 
is limited, this may be particularly difficult to do and is likely to 
reduce the number of cases suitable for the analysis even further. 
Still, common confounders such as age, gender, cancer stage, 
tumor histology, and the treatment delivered require correction 
whenever possible. Therefore, having comprehensive clinical 
annotation of the biological samples is highly desirable. Accurate 
annotation can be especially difficult to obtain for archival, or 
ad hoc, sample collections. Retrieval of case histories may help 
to complete the sample annotation; however, if the samples do 
not encompass the full spectrum of the disease under study, or 
were compiled over a period when standards in clinical manage-
ment changed, then generalizability to the present may be limited 
(Ahmed and Brenton, 2005). Given the importance of adequate 
clinical annotation for interpreting genomic studies, it would seem 
useful to develop a set of guidelines for recording a minimum 
clinical data set for human tissue used in microarray experiments, 
similar to the Minimal Information About a Microarray Experiment 
(MIAME) (Brazma et al., 2001) and the Standards for Reporting 
Diagnostic Accuracy (Bossuyt et al., 2003a, 2003b; Novere et 
al., 2005). A recent publication has taken the first steps in this 
direction (McShane et al., 2005).

Bias refers to a systematic difference in the way that study 
cases are handled or analyzed. Given that bias is a function of 
study design, every study should be carefully considered for all 
possible sources of bias at the outset. Some sources of bias are 
already acknowledged in the literature or are relatively easily 
identified. For example, differences in the physical handling and 

processing of cases and controls can introduce bias and lead to 
erroneous conclusions (Coombes et al., 2005). Technical fac-
tors, such as the time required to conduct an assay, the batch of 
reagents used, and the skill levels of different technicians are all 
possible sources of bias. Pooling of tissues from multiple tissue 
banks to increase the sample size is a common practice; however, 
this may increase heterogeneity and introduce additional biases. 
Conversely, some sources of bias may remain concealed, or the 
magnitude and direction of their effect may be difficult to ascer-
tain (Ransohoff, 2005). Avoiding heterogeneity, randomization of 
processing steps, development of strict inclusion and exclusion 
criteria, systemization of protocols, and blinding of technicians 
to the class assignment of the specimens being handled are all 
valid methods for reducing systematic study bias. An extensive 
review of bias associated with molecular prediction studies has 
recently been published by Ransohoff (2005).

The use of a prospective study design is one of the most 
effective methods for controlling confounding and reducing bias-
es. Investigators can plan in advance the hypothesis to be tested 
and the necessary sample annotation to be collected. In addi-
tion, it allows advance consideration of the required sample size 
(see “False findings, power, and sample size” in the “Statistical 
challenges” section below). And finally, a prospective design can 
ensure that all samples are handled and processed in a standard-
ized fashion to minimize experimental bias. This approach has 
been adopted by the European Organization for Research and 
Treatment of Cancer (EORTC) in designing the Microarray In 
Node-negative Disease may Avoid ChemoTherapy (MINDACT) 
study (see “Clinical utility” section). Inevitably, a prospective 

Table 1. Problems and possible solutions in the design of clinically oriented microarray studies

Category	 Problem	 Potential solutions

Study design issues	 Bias	 Prospective design

		  Randomization (where possible)

		  Blinding (where appropriate)

		  Avoid inappropriate pooling of samples

	 Confounding	C omplete clinical/pathological annotation

		  Stratification using known confounders

		  Use of prospective study design with structured reporting of key information

Array issues	R eproducibility	C hoose a single molecular platform

		  Standardization of technical protocols

		  Biological and technical repeats

		  Make available probe sequences for future reannotation

	 Cross-platform comparison	S equence verification of probes

		  Removal of misannotated probes from analysis

		  Utilize up-to-date version of genome annotation

		  Use rank statistics rather than absolute values of gene expression

Statistical issues	 Overfitting	I nternal validation (leave one out cross-validation or split-sample analysis)

		  External/independent validation

	 Unstable gene lists	 Multiple permutation of training and test sets

	 Study power	A  priori calculation of sample size using available methods

		  Post hoc analysis of microarray data may indicate adequacy of sample size

	 Data interpretation	R anked biological themes

		  Gene set enrichment analysis (GSEA)

		  In vivo modeling
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