
Determining disease prevalence from incidence and
survival using simulation techniques

Simon Crouch *, Alex Smith, Dan Painter, Jinlei Li, Eve Roman

Epidemiology & Cancer Statistics Group, Department of Health Sciences, University of York, YO10 5DD, UK

1. Introduction

Estimation of disease prevalence is of fundamental interest in
epidemiology [1]. As observed by Gigli et al. [2], three main
methods of estimation of prevalence are commonly employed:
cross-sectional population survey; direct count of cases in a
disease register; and mathematical modelling based on incidence
and survival rates. Gigli et al. [2] illustrate a method combining the
latter two approaches in three steps: step 1 counts surviving cases
at an index date from incident cases in a registry; step 2 estimates
the number of prevalent cases lost-to-follow-up from the registry
count; and step 3 estimates the number of prevalent cases at the
index date that were incident before the start of the registry. Steps

1 and 2 together are often referred to as the ‘‘counting method’’ and
step 3 as the ‘‘completeness index method’’.

Previous approaches to steps 2 and 3 of this schema have
focussed on various analytic techniques of estimation [3–6],
themselves based on the relationships between the various
measurable quantities [7–9], or by direct modelling [10]. These
techniques have found wide application in the literature [11–13].
Consideration of the precision of prevalence estimates has
focussed on the variation implied by considering the incidence
process as Poisson [2,14].

In this paper we will consider techniques of estimation for steps
2 and 3 based entirely on simulation. We will illustrate our
techniques using data drawn from a population based cohort of
patients diagnosed with haematological malignancies; in particu-
lar we will provide prevalence estimates for acute myeloid
leukaemia (AML).

We first define what we mean by ‘‘prevalence’’. Broadly
speaking the prevalence of a disease in a population is the number
or proportion of the population alive at some index date,
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A B S T R A C T

Objectives: We present a new method for determining prevalence estimates together with estimates of

their precision, from incidence and survival data using Monte-Carlo simulation techniques. The

algorithm also provides for the incidence process to be marked with the values of subject level

covariates, facilitating calculation of the distribution of these variables in prevalent cases.

Methods: Disease incidence is modelled as a marked stochastic process and simulations are made from

this process. For each simulated incident case, the probability of remaining in the prevalent sub-

population is calculated from bootstrapped survival curves. This algorithm is used to determine the

distribution of prevalence estimates and of the ancillary data associated with the marks of the incidence

process. This is then used to determine prevalence estimates and estimates of the precision of these

estimates, together with estimates of the distribution of ancillary variables in the prevalent sub-

population. This technique is illustrated by determining the prevalence of acute myeloid leukaemia from

data held in the Haematological Malignancy Research Network (HMRN). In addition, the precision of

these estimates is determined and the age distribution of prevalent cases diagnosed within twenty years

of the prevalence index date is calculated.

Conclusion: Determining prevalence estimates by using Monte-Carlo simulation techniques provides a

means of calculation more flexible that traditional techniques. In addition to automatically providing

precision estimates for the prevalence estimates, the distribution of any measured subject level variables

can be calculated for the prevalent sub-population. Temporal changes in incidence and in survival offer

no difficulties for the method.
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previously diagnosed with the disease and not removed from the
prevalent disease sub-population between diagnosis and the index
date (by death or complete cure, for example); this is referred to as
‘‘complete prevalence’’. We also define ‘‘n-year prevalence’’ and
‘‘nth-year prevalence’’ to refer to those in the prevalent sub-
population at the index date having received a diagnosis of the
disease in the previous n years or during the nth year before the
index date respectively. Therefore n-year prevalence is the sum of
kth-year prevalence for k between 1 and n. So, for example, 3-year
prevalence refers to all those in the prevalent sub-population on
the index date diagnosed in the three years before the index date;
3rd-year prevalence refers to all those in the prevalent population
on the index date diagnosed during the third year before the index
date (Fig. 1). For simplicity of presentation in this paper, we assume
that the only removal mechanism from the prevalent sub-
population is death.

The relevance of n-year and nth-year prevalence for different
values of n depends upon the use made of the estimates and upon
the disease under consideration. n-year and nth-year prevalence
estimates for small values of n will typically correspond to periods
of intense treatment for acute diseases; for nth-year prevalence,
larger values of n will correspond to periods of long term
monitoring. For chronic diseases, all values of n are typically of
interest.

In this paper we present a new method of determining
prevalence based on the computationally intensive method of
simulation. The advantages of this new method over existing
methodology are that it naturally allows for the estimation of the
precision of prevalence estimates and also allows for the
estimation of ancillary information about the prevalent sub-
population (for example, it allows for the estimation of the age
distribution of the prevalent sub-population). In addition more
complex modelling of incidence and survival functions than is
usually allowed for in current techniques provides no additional
obstacle to simulation techniques.

2. Materials

The determination by simulation of prevalence from incidence
and survival estimates derived from a patient cohort is illustrated
with data on patients diagnosed with acute myeloid leukaemia
(AML) drawn from the UK’s population-based Haematological
Malignancy Research Network (HMRN) [15]. Initiated in 2004, and
covering a population of 3.6 million, this unique patient cohort was
established to provide robust generalizable data to inform clinical
practice and research. Comprehensive information about HMRN is
available elsewhere [15] but briefly, all patients newly diagnosed
with a haematological malignancy residing in the HMRN region
(>2000 patients a year) have full-treatment, response and
outcome data collected to clinical trial standards. HMRN has
Section 251 support under the NHS Act 2006; enabling the Health
and Social Care Information Centre (HSCIC) to routinely link to and

release nationwide information on deaths, subsequent cancer
registrations, and Hospital Episode Statistics (HES). Loss-to-follow-
up rates are very low in this registry, thanks to this comprehensive
data linkage. In fact, for the small number of subjects that are lost-
to-follow-up (by emigration from the UK, for example), the actual
date of loss is known with precision in this registry. The
demographic structure of the region is similar to the demographic
structure of the UK as a whole, allowing for reliable generalization
from this population to the population of the UK.

Incidence data on patients, 18 years and older, diagnosed with
AML was available from the HMRN registry for seven years from
01/09/2005 to 31/08/2012. The index date for the calculations of
prevalence was taken to be 31/08/2011 and years are taken to run
from the first of September to the thirty-first of August. Survival
outcome data was available up until 26/03/2013 for patients
diagnosed between 01/09/2005 and 31/08/2011. Characteristics of
these patients are shown in Table 1.

2.1. Methods

We can estimate the number of prevalent cases of a disease at a
particular index date by combining information on incidence and
survival. An incident case at time t before the index date,
characterized by a vector of explanatory variables for survival x,
will contribute S(x, t) to the expected number of prevalent cases at
the index date, where S(x, t) is the survival function conditional on
explanatory variables x. Therefore, if there are n cases incident at
times {t1, t2, . . ., tn} each with corresponding survival explanatory
variables {x1, x2, . . ., xn}, then the expected number of prevalent
cases at the index date T0 is given by

P ¼
Xn

i¼1

Sðxi; T0 � tiÞ

In this paper we take prevalent cases to be those that have ever
been diagnosed with the disease under consideration. This can
easily be generalized so that prevalence refers to subjects that have
not been removed from the prevalent sub-population by other
means (such as cure) by taking the end-point for the survival
function S to be time to removal from prevalent population rather
than simply time to death. Complete prevalence takes the sum over
all time before the index date; this generalizes to estimation of n-
year and nth-year prevalence by restricting the sum to cover
incident cases from the corresponding time period.

The value of P can be calculated by simulation. If the times and
associated survival explanatory variables of incident cases can be
appropriately modelled, and if survival conditional on
the explanatory variables can be estimated, then simulation
from the incidence model, together with the survival function, will
provide an estimate of P. What is more, sources of variation can be
taken into account, so that calculations of P from repeated random
draws from the incidence model will provide an estimate of the

Fig. 1. Types of prevalence. Complete prevalence includes diagnosed cases from any

time before the index date still in the prevalent population. n-year prevalence

includes cases diagnosed within the last n years. nth year prevalence includes cases

diagnosed during the single year between (n � 1) and n years before the index date.

Table 1
Characteristics of the AML patient cohort.

Incidence dataset Survival dataset

Incidence dates 01/09/2005–31/08/2012 01/09/2005–31/08/2011

Number of subjects 1079 934

Male 592 (55%) 517 (55%)

Female 487 (45%) 417 (45%)

Age range (years) 18.7–97.8 19.0–97.8

Median age (IQR) 71.9 (60.0–79.8) 71.7 (60.0–79.3)

Maximum follow-up (days) N/A 2720

Median survival (95% CI) N/A 132 (109–159)

Total follow-up (years) N/A 1390

IQR, inter quartile range.
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