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Abstract

Production and marketing of heavy fuel oil (HFO) are an easy, effective and economical way to dispose off certain very heavy refinery streams
such as short residue (SR, available from the bottom of vacuum distillation units) and clarified liquid oil (CLO, available from the bottom of the
main fractionators of fluidized-bed catalytic crackers). Certain lighter streams such as heavy cycle oil (HCO), light cycle oil (LCO) and kerosene,
are added to the heavy residual stock to improve its quality in terms of fluidity, combustibility, etc., to be marketed as fuel oil. The present study
aims at optimization of the fuel oil blending process to maximize profit, minimize quality give-away, maximize production, minimize use of
lighter products such as LCO and kerosene, and maximize the calorific value, etc. Several multi-objective optimization problems have been
formulated comprising of two and three-objective functions and solved using the elitist non-dominated sorting genetic algorithm (NSGA-II). This
evolutionary technique produces a set of non-dominating (equally good) Pareto optimal solutions from which the operator can choose the one that
is most suitable (preferred point). Also, a fixed-length macro–macro mutation operator, inspired by jumping genes in natural genetics, has been
used with NSGA-II to solve this problem. This modified algorithm leads to a significant reduction in the computational effort. Indeed, this
adaptation can be of immense use in reducing the computational effort for other problems in chemical engineering.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Blending of various semi-finished or finished components is
a common operation in the petroleum, pharmaceutical, cos-
metics and food industries. The blend compositions are so
chosen that the products meet market specifications or conform
to environmental requirements. Optimization of such operations
is generally done for the maximization of profit, optimization
of usage and minimization of quality give-away. The classic
blending problem arises in petroleum refineries since they
almost always sell finished products made from more than one
component. Blending of crude oil, gasoline, diesel oil, LPG,
lube oil, bitumen and heavy fuel oil (HFO) is carried out in most
refineries. The refiner desires to select the best combination of

blend components, and often varies the formulation depending
on price and availability. Some information on the optimization
of in-line and off-line (batch) operations is available in the open
literature [1,2]. However, no comprehensive study on the off-
line optimization of HFO blend recipes is available. Given the
high volume of raw material available for HFO blend pro-
duction in refineries, the global optimization of the blend recipe
could lead to substantial savings in cost, resulting in higher
profit margins. This study is concerned with the off-line op-
timization of HFO blends, motivated, in part, by an industry in
India.

HFO (also called bunker C fuel, bunker fuel oil, bunk oil,
black liquor, marine fuel oil, residual fuel, Type 6 heating fuel
oil, No. 6 fuel oil and furnace oil) is a low grade fuel primarily
composed of short residue (SR, obtained as the bottoms or
residue from the crude vacuum distillation unit) blended with
smaller quantities of distillates, namely, clarified liquid oil
(CLO), light cycle oil (LCO), heavy cycle oil (HCO) and
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kerosene, to meet market requirements or standards of specific
customers. The physical properties that describe the grade of
HFO produced are: kinematic viscosity (ν), specific gravity
(sg), flash point (FP), pour point (PP), calorific value (CV), and
the sulfur content (Swt.%) of the blend. The viscosity deter-
mines the storage and handling temperature if the pour point of
the fuel is low. The temperature for atomization of the fuel also
depends on the viscosity. Knowledge of specific gravity is
required for quantity calculations and for proper sizing of disc-
stack centrifuges for clarification. In addition, the specific gra-
vity gives an indication of other fuel characteristics, including
specific energy and ignition quality. Oils of the same specific
gravity do not necessarily have the same viscosity. The FP is
important for minimizing the risk of fire. The PP is important for
ascertaining a safe storage temperature for the fuel since the
latter is generally stored at temperatures at least 5 to 7 °C above
the pour point. CV is important since it represents the heat
released during burning. The presence of sulfur in HFO can give
rise to air pollution and corrosion problems.

In a modern refinery, there is a wide range of diluents
available for the production of HFO from SR. The optimal use
of these diluents to produce a saleable product having the
required properties while simultaneously improving the profit is
important. Linear programming (LP) [3,4] was probably first
used [5] by Symonds [6] to solve a simplified gasoline blending
problem. Similar work on gasoline blending was reported by
Magoulas et al. [7]. Indeed, LP has been widely accepted in the
refining industry as a major planning, scheduling and optimi-
zation tool due to its ease of use and faster convergence. Un-
fortunately, the equations describing the product properties
(e.g., viscosity, specific gravity, FP and PP) are non-linear. The
use of LP for solving such non-linear problems led to the imp-
airment of the blending results. This led to the use of more
complex algorithms like non-linear programming (NLP) [8–10].
Analogous procedures were developed to approximate the non-
linearity associated with the blending models, e.g., by char-
acterizing HFO using the viscosity index instead of viscosity.
However, these algorithms do not guarantee global optima since
linearization could restrict the feasible space. Successive (se-
quential) linear programming (SLP) [11] was subsequently used
in which the objective function and the constraints were linear-
ized, LP was used and this sequence was repeated several times.
This technique was often found to converge to local optima.
For ‘nearly-linear’ problems this was found to be adequate
[11]. These techniques have been reviewed by Tawarmalani and
Sahinidis [12]. Techniques based on sequential quadratic pro-
gramming (SQP) [13,14] were found to be superior where one

solves a non-linear optimization problem by successively solving
a series of quadratic programming sub-problems. More robust
AI-based optimization techniques are available these days which
usually converge to global optima, and are replacing the earlier
methods.

The focus in this study is the single and multi-objective
optimization of HFO blending operations using adaptations of
genetic algorithm (GA) [15]. In case of multi-objective
optimization, a set of non-dominated (equally good) Pareto
optimal solutions [16] is often obtained. Pareto sets are such that
when one moves from any one point to another on the set, at
least one objective function improves while at least one other
deteriorates. The elitist non-dominated sorting genetic algo-
rithm-II, referred to as NSGA-II [16,17], is quite a popular
technique for obtaining the Pareto solutions. This algorithm
incorporates the concept of elitism so as to make it more po-
werful than the earlier version, NSGA-I [16,18]. Both NSGA-I
and NSGA-II give the entire Pareto set in a single application of
the algorithm. Unlike SQP, initial guesses are not required in
these techniques. These algorithms have been used to solve a
variety of multi-objective optimization problems in chemical
engineering, as reviewed by Bhaskar et al. [19]. An adaptation of
NSGA-II, referred to as NSGA-II-aJG, inspired by the concept of
jumping genes (JG) or transposons [20] in natural genetics, is
presented in this study to explore if faster convergence can be
achieved. This is an improved version of the NSGA-II-JG code
developed by Kasat and Gupta [21].

2. Formulation

2.1. Model equations

The model equations for the mass balances are simple (and
so are not given here). Perfect mixing is assumed. Due to the
non-availability of data on various capital and operating costs
(e.g., the cost of the blender, piping costs, inventory costs,
pumping and maintenance costs, etc., which typically constitute
less than about 2–3% of the total cost) associated with blending,
these were not included in the cost of the blend. The amortized
costs would be constant for an existing blending unit, and would
only reduce the profits by a constant amount, without affecting
the general trends of the final results. The manufacturing costs
per ton of two key components in the blend, SR and CLO, have
been assumed (after discussions with the refinery whose

Table 1
Cost price and calorific value [23,24] of the components used for preparing the
HFO blend

Component Price (Rs./ton) 10−3 CVi (kJ/kg)

Short residue 8000 38.311
Clarified liquid oil 11,000 41.860
Heavy cycle oil 12,000 44.790
Light cycle oil 12,500 45.209
Kerosene 13,500 46.465

Table 2
Bounds and constraints used in the optimization problems

Lower Upper

Availability bounds (ton) Short residue 0.0 650
Clarified liquid oil 0.0 150
Heavy cycle oil 0.0 250
Light cycle oil 0.0 300
Kerosene 0.0 100

Blend property bounds Specific gravity 0.95 1.0
Flash point (°C) 60 80
Pour point (°C) −40 −22
wt.% sulfur 3.5 4.5
Viscosity (m2/s) 6.0×10−5 3.0×10−4
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