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Abstract

Modeling mercury speciation is an important requirement for estimating harmful emissions from coal-fired power plants and developing
strategies to reduce them. First-principle models based on chemical, kinetic, and thermodynamic aspects exist, but these are complex and difficult
to develop. The use of modern data-based machine learning techniques has been recently introduced, including neural networks. Here we propose
an alternative approach using abductive networks based on the group method of data handling (GMDH) algorithm, with the advantages of
simplified and more automated model synthesis, automatic selection of significant inputs, and more transparent input–output model relationships.
Models were developed for predicting three types of mercury speciation (elemental, oxidized, and particulate) using a small dataset containing six
inputs parameters on the composition of the coal used and boiler operating conditions. Prediction performance compares favourably with neural
network models developed using the same dataset, with correlation coefficients as high as 0.97 for training data. Network committees (ensembles)
are proposed as a means of improving prediction accuracy, and suggestions are made for future work to further improve performance.
© 2006 Elsevier B.V. All rights reserved.

Index terms: Mercury speciation; Flue gases; Boiler emissions; Predictive modeling; Inferential emission monitoring; Soft sensors; Abductive networks; GMDH
algorithm; Neural networks; Network committees; Network ensembles

1. Introduction

Determiningmercury speciation is an important requirement for
estimating mercury emission from combustion flue gases and the
efficiency of control measures to reduce it. Major mercury sources
from human activities are coal-fired electric utility boilers, where
speciation depends on the operating conditions, including the type
of coal used and flue gas temperature and composition. Mercury
compounds from combustion sources consist mainly of gaseous
elemental mercury (Hg0), gaseous oxidized mercury (Hg2+), and
particle-bound mercury (Hgp) [1]. Theoretical first-principle
approaches have been used to study mercury speciation, including
kinetic modeling [2] and thermodynamic equilibrium calculations
[3]. Theoretical models rely on knowledge of the processes in-
volved, which are often quite complex and highly nonlinear and
therefore are difficult to describe accurately. Model development
can also be expensive and time consuming. In addition, the above

methods suffer from limited accuracy due to the lack of accurate
rate constants of reaction mechanisms and to uncertainties caused
by model assumptions and simplifications and incomplete under-
standing of mercury science [4]. Recently, data-based modeling
using machine learning techniques, such as neural networks, fuzzy
logic, and genetic algorithms, has become a popular approach for
solving complex nonlinear problems without requiring exhaustive
theoretical knowledge of the phenomenon being modeled. Such
approaches depend primarily on experimental input–output data
on the process, which are usually readily available in large
quantities, rather than accurate theoretical knowledge. A model for
the phenomenon considered is developed through training on
input–output process data in the form of an adequate number of
solved examples. Once synthesized, the model can be used to
perform fast predictions of outputs corresponding to new cases
previously unseen during training. The method offers a number of
advantages over conventional approaches, including increased to-
lerance to noise and uncertainty, reduced need for knowledge on
the modeled phenomenon, and the relative ease of developing and
updating the model. In the last few years, neural networks have

Fuel Processing Technology 88 (2007) 483–491
www.elsevier.com/locate/fuproc

⁎ Tel.: +966 3 860 4320; fax: +966 3 860 3059.
E-mail address: radwan@kfupm.edu.sa.

0378-3820/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.fuproc.2006.12.005

mailto:radwan@kfupm.edu.sa
http://dx.doi.org/10.1016/j.fuproc.2006.12.005


formed the basis of many soft (inferential) sensors for monitoring
pollutant emissions [5–9]. Such sensors offer a cost-effective and
reliable alternative to expensive online analyzers in many areas of
application, includingmercurymonitoring. Tsiros andDimopoulos
have used neural networks and other statistical and machine
learning techniques to model atmospheric emission of gaseous soil
mercury and identify critical factors for controlling such emissions
[10]. Neural networks were used together with optical fiber
chemical sensors formonitoringmercury and other heavymetals in
aquatic samples [11]. Neural networks were used for modeling a
spectrophotometric kinetic system and optimizing the experimental
conditions for measuring traces of mercury in water [12].
Applications of neural networks to modeling mercury speciation
in flue gases are relatively scarce in the literature, and only thework
by Jensen et al. [13] could be cited at the time of writing.

In general, the neural network approach suffers from a
number of limitations, including difficulty in determining
optimum network topology and training parameters [14].
There are many choices to be made in determining numerous
critical design parameters with little guidance available [15],
and designers often resort to trial and error approaches which
can be tedious and time consuming [16,17]. Such design
parameters include the number and size of the hidden layers, the
type of neuron transfer functions for the various layers, the
learning rate and momentum coefficient, and training stopping
criteria to avoid overfitting and ensure adequate generalization
with new data. Another limitation is the black box nature of
neural network models that give little insight into the modeled
relationship and the relative significance of various inputs, thus
providing poor explanation facilities [18]. The acceptability of,
and confidence in, automated prediction tools in areas such as
electric load forecasting, pollution control and medical
diagnosis is related to their transparency and their ability to
justify results to human operators, experts and decision makers
[19]. To overcome such limitations, we propose using self-
organized abductive networks [20] based on the group method
of data handling (GMDH) learning algorithm [21,22] as an
alternative machine learning approach to modeling and
estimating mercury speciation in the flue gasses of coal-fired
power plants. We have previously used this approach in several
weather prediction applications including modeling and fore-
casting the minimum [23] and maximum [24] daily tempera-
tures and the hourly temperature profile [25]. Compared to
neural networks, abductive networks offer the advantages of
faster model development requiring little or no user interven-
tion, faster convergence during model synthesis without the
problem of getting stuck in local minima, automatic selection of
effective input variables, and automatic configuration of the
model structure [14]. With the model represented as a hierarchy
of polynomial expressions, resulting analytical model relation-
ships can provide insight into the modeled phenomena,
highlight contributions of various inputs, and allow comparison
with previously used empirical or statistical models. The
technique automatically avoids overfitting by using a proven
regularization criterion based on penalizing model complexity
[22] without requiring a dedicated validation dataset during
training, as is the case with many neural network paradigms.

Following a brief description of abductive networks and the
underlying GMDH learning algorithm in Section 2, the mercury
speciation dataset used in this study is described in Section 3. In
Section 4, abductive network models for the three types of
mercury speciation are described and their performance on both
the training and evaluation sets is analyzed and compared with
neural network results reported in the literature for the same
dataset. Single (monolithic) abductive models of various levels
of model complexity are presented. Modular network commit-
tees (ensembles) are also introduced as a means of improving
prediction accuracy beyond that obtained with the monolithic
models. Section 5 includes conclusions and suggestions for
future work.

2. GMDH and AIM abductive networks

AIM (abductory inductive mechanism) [26] is a supervised
inductive machine learning tool for automatically synthesizing
abductive network models from a database of inputs and outputs
representing a training set of solved examples. As a GMDH
algorithm, the tool can automatically synthesize adequate
models that embody the inherent structure of complex and
highly nonlinear systems. Automation of model synthesis not
only lessens the burden on the analyst but also safeguards the
model generated against influence by human biases and
misjudgments. The GMDH approach is a formalized paradigm
for iterated (multi-phase) polynomial regression capable of
producing a high-degree polynomial model in effective
predictors. The process is ‘evolutionary’ in nature, using initially
simple (myopic) regression relationships to derivemore accurate
representations in the next iteration. To prevent exponential
growth and limit model complexity, the algorithm selects only
relationships having good predicting powers within each phase.
Iteration is stopped when the new generation regression
equations start to have poorer prediction performance than
those of the previous generation, at which point the model starts
to become overspecialized and therefore unlikely to perform
well with new data. The algorithm has three main elements:
representation, selection, and stopping. It applies abduction
heuristics for making decisions concerning some or all of these
three aspects.

To illustrate these steps for the classical GMDH approach,
consider an estimation database of ne observations (rows) and
m+1 columns for m independent variables (x1, x2,…, xm) and
one dependent variable y. In the first iteration we assume that
our predictors are the actual input variables. The initial rough
prediction equations are derived by taking each pair of input
variables (xi, xj; i,j=1, 2,…, m) together with the output y and
computing the quadratic regression polynomial [21]:

y ¼ Aþ Bxi þ Cxj þ Dx2i þ Ex2j þ Fxixj: ð1Þ

Each of the resulting m(m−1) /2 polynomials is evaluated
using data for the pair of x variables used to generate it, thus
producing new estimation variables (z1, z2,…, zm(m− 1) / 2) which
would be expected to describe y better than the original
variables. The resulting z variables are screened according to
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