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Automatic control of the flotation process is a difficult task due to the large number of variables involved, signif-
icant disturbances, and the process's complex nature. Previous research has established that flotation perfor-
mance is reflected in the structure of the froth's surface. This paper describes the application of machine vision
and fuzzy logic in controlling a batch-flotation cell. To perform this process, a laboratory flotation cell was oper-
ated under different conditions while process and image data were simultaneously recorded. Then, correlations
between the resultant froth features and process variables were modeled, and an interpretable froth model was
created. A fuzzy controllerwas designed and implemented to control process performance through the extracted
froth features at the desired level bymanipulating the selected process variables. The results indicate that the de-
veloped control system is able to handle process disturbances and track reference signals.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Froth flotation is a physiochemical process for separating valuable
and unwanted gangue minerals (Napier-Munn and Wills 2011). Effec-
tive flotation-system control is difficult to achieve, owing to the nonlin-
ear, dynamic nature of the process (Bergh and Yianatos 2011; Bonifazi
et al. 2002; Shean and Cilliers 2011). The primary objectives for control-
ling flotation circuits include metallurgical-performance parameters
(i.e., recovery and concentrate grade). Onlinemeasurement and estima-
tion of these variables usually require sophisticated instruments that
are expensive to purchase andmaintain. Furthermore, the bulk concen-
trates of theflotation circuits are often sent to these on-line instruments
for analysis and the process behavior at single units cannot be detected.
For these reasons, froth-based modeling and control using a combina-
tion of machine vision and intelligent control techniques (like fuzzy
logic) has been considered as an alternative or supplementary control
strategy over the last decade (Holtham and Nguyen 2002; Kaartinen
et al. 2006; Liu and MacGregor 2008).

Machine vision is a nonintrusive, cost-effective, reliable technique
for monitoring and controlling flotation systems (Aldrich et al. 2010;
Bonifazi et al. 2000; Holtham and Nguyen 2002; Kaartinen et al. 2006;
Mehrabi et al. 2014; Moolman et al. 1995, 1996a, 1996b; Morar et al.
2012; Vanegas andHoltham2008). Themain objective of amachine–vi-
sion system is to automatically capture and measure the froth's visual
features (i.e., bubble size distribution, froth color, velocity, and stability)
under different process conditions. The extracted froth characteristics
can then be used as inputs to a feedback–control system that

manipulates the chosen process variables (i.e., air-flow rate, froth
depth, reagent dosage) in order to maintain optimum flotation perfor-
mance (Holtham and Nguyen 2002; Kaartinen et al. 2006).

Expert and fuzzy systems are widely used to control complex grind-
ing and flotation circuits (Bergh andYianatos 2011; Cipriano et al. 1998;
Cipriano et al. 1997; Jovanović and Miljanović 2015; Louw et al. 2003;
Shean and Cilliers 2011). Fuzzy controllers are based on simple
qualitative-control rules, not precise mathematical models. Control sys-
tems based on fuzzy rules can also potentially extend control capability,
even under operating conditions in which linear control techniques
(like PID) fail (Lewis 1997; Pedrycz 1993).

In the previous study, the authors developed algorithms for measur-
ing the froth visual features and predicted themetallurgical parameters
of a batch flotation process (Jahedsaravani et al. 2014b). In the current
study, a froth-based model of the above lab-process is developed and
then amodel-based fuzzy control system is designed and implemented.
This promises to make significant contributions to the development of
online, computer vision-based control systems.

2. Neural network-based flotation-process modeling

2.1. Data collection

A copper sulfide ore ground to d80 = 75 μm was conditioned with
collector (Potassium Amyl Xanthate) and frother (Aerofroth 65) to be
subsequently floated in a 2.5 L laboratory flotation cell. The air flow
rate was measured by a gas flowmeter and froth depth was controlled
at a height of 2 cm by adding make-up water during the experiments.
The concentrate samples were collected at time intervals of 0.5, 2 and
5 min. The froth was allowed to freely overflow and the concentrates
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were analyzed for their water, mass recovery and copper content. The
tailings were filtered and dried and their copper content was
determined.

A batch-flotation cell equipped with a camera and lighting system
was operated under different conditions (i.e., with varying air flow
rates, slurry solids %, collector–frother dosages, and pH) and the metal-
lurgical parameters (i.e., concentrate grade and copper, mass, andwater
recoveries) as well as froth visual features (i.e., bubble-size distribution
and froth velocity, color, and stability) were recorded simultaneously
(see Table 1). A total of 81 video and process-data sets were captured
and analyzed. More details on these experiments can be found in
Jahedsaravani et al. (2014b).

2.2. Image processing

The most significant froth features for describing the process's con-
ditions and performance—including bubble-size distribution and froth
color, velocity, and stability—were determined. A marker-based water-
shed algorithm was developed for measuring bubble-size distribution
(Jahedsaravani et al. 2014a). Froth color was quantified by extracting
red, green and blue (RGB) values from the color images. A block-
matching algorithm was used to measure froth velocity. Froth stability,
or bubble-collapse rate, was calculated as the difference in the reflec-
tance and shadow created at the froth's surface as a result of bubbles
appearing and disappearing in successive frames in the context of
froth-velocity data (Jahedsaravani et al. 2014b).

2.3. Froth-based flotation-process modeling

Literature on the use of froth-image variables in flotation control is
scarce. What is known is that froth visual features are indicative of pro-
cess conditions andperformance and quickly respond to changes in pro-
cess variables. Hence, by developing a reliable model that connects
visual froth features with process variables, one should be able to con-
trol the flotation process.

Of course, a few studies have been oriented toward froth-based
modeling and controlling the flotation processes, including the work
of Liu and MacGregor (2008). Liu and MacGregor's study is particularly
interesting in that it uses bubble-size distribution, the area of black
holes (i.e., black regions formed on the froth's surface as a result of
overloaded bubbles collapsing), and clear windows (i.e., black regions

appearing on under-loaded bubbles) as its output variables. Thus, this
previous study asserts that a desired froth structure can be achieved
through manipulating process variables, without needing to measure
metallurgical parameters. Such a model-based control system can
therefore provide better control performance when compared with
conventional controllers.

Consequently, the present study models a correlation between
froth-image data and process variables using neural networks, as de-
scribed below. Finally, a fuzzy controller was designed to control flota-
tion performance by manipulating the selected process variables. The
results are presented in the next sections.

A matrix of the correlation between process and image variables is
shown in Table 2. The results indicate that pH, air-flow rate, and frother
dosage are the process variables most significantly related to froth fea-
tures, and this is of central importance for control purposes.

Neural networks were then applied to model the interdependence
of the image and process variables. Different neural networks were de-
veloped, and their performance was evaluated using the correlation co-
efficient (R) and the root-mean-square error (RMSE), as calculated
using the following expressions:

R ¼ cov yi; yið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var yið Þ � var yið Þp ð1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

yi−yið Þ
2

vuut ð2Þ

where yi and yi are the observed (actual) and model outputs,
respectively.

Finally, three-layer, feed forward-perceptron neural networks were
chosen. It should be noted that 70% of the resultant data was randomly

Table 1
Input and output variables of flotation experiments.

Input
variables

Range Output variables

Gas flow rate, Jg
(L/min)

5–10–15
Cu recovery (Rcu); concentrate
grade (Gcu); mass recovery (Rm); water
recovery (Rw)Slurry solids %, ρsl 24–28–32

Frother dosage, Cf
(ppm)

5–10–15
Froth bubble size (Db);
froth velocity (Vf); froth
color (Cf); bubble collapse rate (Crb)

Collector dosage, Cl

(g/t)
20–30–40

pH 10.8–11.5–12.2

Table 2
Correlation coefficient between process and image variables.

Process variables
Image variables

Db Vf Cf Crb

pH −0.64⁎ 0.35⁎ 0.64⁎ −0.65⁎

Jg 0.29⁎ 0.68⁎ 0.22⁎ 0.31⁎

Cf −0.28⁎ 0.25⁎ 0.10 −0.15
Cl 0.16 0.15 0.09 0.00
ρsl 0.07 0.17 0.09 −0.12

⁎ Significant at 95% confidence level.

Fig. 1. Structure of developed feed forward neural network for Db model.

Table 3
Performance evaluation of developed neural network models.

Image
variables

R RMSE

Training
data

Testing
Data

Total
data

Training
data

Testing
data

Total
data

Db 0.92 0.93 1.14 1.68 0.92 0.93
Vf 0.96 0.95 13.07 17.94 0.96 0.95
Cf 0.93 0.87 2.39 3.75 0.93 0.87
Crb 0.96 0.93 0.17 0.23 0.96 0.93

91A. Jahedsaravani et al. / International Journal of Mineral Processing 146 (2016) 90–96



Download English Version:

https://daneshyari.com/en/article/213816

Download Persian Version:

https://daneshyari.com/article/213816

Daneshyari.com

https://daneshyari.com/en/article/213816
https://daneshyari.com/article/213816
https://daneshyari.com

