

Contents lists available at ScienceDirect

Matrix Biology

journal homepage: www.elsevier.com/locate/matbio

Transient tropoelastin nanoparticles are early-stage intermediates in the coacervation of human tropoelastin whose aggregation is facilitated by heparan sulfate and heparin decasaccharides

Yidong Tu, Anthony S. Weiss*

School of Molecular and Microbial Biosciences G08, University of Sydney NSW 2006, Australia

ARTICLE INFO

Article history:
Received 17 September 2009
Received in revised form 26 October 2009
Accepted 27 October 2009

Keywords: Elastin Tropoelastin Heparin Oligosaccharide

ABSTRACT

Tropoelastin assembly is a key step in the formation of elastin. We consider how nanoscale intracellular assemblies of tropoelastin can congregate in an extracellular environment to give microscale aggregates. We describe novel 200–300 nm spherical particles that serve as intermediates in the formation of the coacervate. Their aggregation gives 800 nm to 1 µm species. This process is facilitated by heparan sulfate and dermatan sulfate interactions which effectively lower the critical concentration to facilitate this transition. This coacervation process was examined using a panel of heparin chains of various lengths and showed greatest efficacy for the decasaccharide, followed by the octasaccharide, while the hexasaccharide displayed the shortest efficacious length. We propose that these oligosaccharide interactions enable the charge-mediated aggregation of positively charged tropoelastin. This biochemistry models glycosaminoglycan interactions on the cell surface during elastogenesis which is characterized by the clustering of nascent tropoelastin aggregates to form micron-sized spherules.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Tropoelastin is the soluble 60–70 kDa precursor of elastin (Mithieux and Weiss, 2005). Tropoelastin monomers self-assemble though coacervation which aligns and concentrates the molecules (Urry et al., 1978). At low temperatures, tropoelastin is soluble in solution, because water forms a clathrate-like structure around the tropoelastin hydrophobic regions which keeps the molecule unfolded. On raising the temperature, the clathrate-like structure of water is disrupted, which exposes the hydrophobic domains and allows them to interact with other hydrophobic domains (Urry et al., 1969, 1974; Urry and Long, 1977). Optimal coacervation of human tropoelastin occurs at 37 °C, 150 mM NaCl with pH 7–8 (Vrhovski et al., 1997).

The early stages of tropoelastin assembly in elastogenesis are only partly understood. There is a disparity between the sizes of the intracellular ~300 nm vesicular aggregates that culminate in tropoelastin secretion (Hucthagowder et al., 2009) and the larger ~1 µm coacervate particles that are seen on the cell surface (Kozel et al., 2006). These interactions involve cell surface glycosaminoglycans, particularly heparan sulfate as modeled by heparin (Broekelmann et al., 2005; Cain et al., 2005; Gheduzzi et al., 2005). The elastogenic cell surface is blanketed by a negatively charged glycocalyx that is dominated by

heparan sulfate (Perrimon and Bernfield, 2000). Charged glycosaminoglycans bind tropoelastin and mediate coacervation through charge contributions by the lysine side chains on the molecules (Wu et al., 1999). Glycosaminoglycans such as heparin enable the coacervation of synthetic human tropoelastin at concentrations substantially below the critical (i.e. threshold) concentration (Tu and Weiss, 2008). Indeed tropoelastin's remarkably high pl has a counterpart in heparin and heparan sulfate which are amongst the most negatively charged biomolecules that have been identified (Perrimon and Bernfield, 2000). Here we assess the capacity of heparan sulfate and heparin oligosaccharides to promote the aggregation of tropoelastin nanoaggregates to form micron-sized particles.

Tropoelastin coacervation can be distinguished into four distinct stages: $\sim 1-2 \, \mu m$ protein spherules, larger $\sim 6 \, \mu m$ droplet formation, fusion of droplets followed by the formation of a coalesced layer (Tu and Weiss, 2008). No intermediates have been detected in the progression from monomer tropoelastin ($\sim 15 \, nm$) to these assembly stages (Clarke et al., 2005, 2006; Wise and Weiss, 2009). This means that there is a rapid monomer to n-mer assembly of monomers to reach the critical concentration which is above 1 mg/ml tropoelastin (Toonkool et al., 2001).

We show here that as a biochemical model of the elastogenic cell surface, heparan sulfate promotes the stabilization and aggregation of ~200 nm tropoelastin nanoparticles. Using a panel of heparin oligosaccharides, we show that the most effective glycosaminoglycan length is a decasaccharide.

^{*} Corresponding author. Tel.: +61 2 9351 3464; fax: +61 2 9351 5858. E-mail address: aweiss@usyd.edu.au (A.S. Weiss).

0.25

0.00

100

100 µg/ml

50 μg/ml

600

500

2. Results

2.1. Heparin derived oligosaccharides can promote tropoelastin coacervation

A sub-critical concentration of 120 μ g/ml tropoelastin in PBS was selected because it is one-tenth of the minimum amount required for coacervation in the absence of glycosaminoglycans (Wu et al., 1999; Toonkool et al., 2001). Various lengths of heparin-derived oligosaccharides were used to assess the efficacy of the coacervation of this solution at 37 °C (Tu and Weiss, 2008) where each oligosaccharide was kept at a constant concentration of 20 μ g/ml. The 10-mer and full-length heparin promoted coacervation to a similar extent. The 8-mer enabled some coacervation, while negligible coacervation occurred in the presence of 6-mer, 4-mer and 2-mer (Fig. 1).

To assess the lowest effective concentration for each length of oligosaccharide, their various concentrations were tested for their ability to detectably coacervate tropoelastin that was maintained at 120 μ g/ml in PBS. The 10-mer facilitated coacervation at 5 μ g/ml oligosaccharide (Fig. 2A). The 8-mer required at least 20 μ g/ml oligosaccharide, where 50 μ g/ml gave an effect comparable to 20 μ g/ml 10-mer (Fig. 2B). Tropoelastin started to coacervate only if the concentration of 6-mer was at least 100 μ g/ml (Fig. 2C). Up to 200 μ g/ml of the 4-mer and 2-mer showed no effect on coacervation.

The critical concentrations for coacervation of tropoelastin were assessed in the presence of 20 μ g/ml heparin oligosaccharides. At least 30 μ g/ml tropoelastin was needed to achieve coacervation with the 10-mer, 60 μ g/ml tropoelastin for the 8-mer.

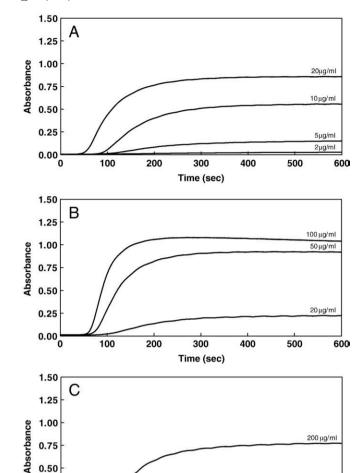
2.2. Tropoelastin coacervation is modulated by heparin derived oligosaccharides

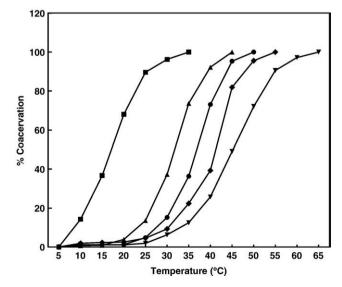
Full-length, 10-mer, 8-mer and 6-mer heparin were prepared in PBS at 20 μ g/ml and 120 μ g/ml tropoelastin was added to these solutions. Turbidity at 300 nm was assessed after 10 min at various temperatures from 10 to 70 °C, then the maximum change of absorbance at each temperature was recorded and used to express a percentage of the maximum turbidity for each sample, in order to generate a series of coacervation curves. The midpoints of coacervation were approximately 17 °C, 32 °C, 37 °C, 40 °C and 46 °C for heparin, 10-mer, 8-mer, 6-mer and the no-heparin control, respectively (Fig. 3). The 4-mer and 2-mer showed the same result as the negative control. Of the oligosaccharides, only the 10-mer was capable of achieving at least 90% coacervation at 37 °C.

2.3. Nanoparticle formation during coacervation is modulated by oligosaccharide length

Tropoelastin at 120 µg/ml in PBS was a monodisperse ~15 nm monomer population at 20 °C and 25 °C (Toonkool et al., 2001; Clarke

Fig. 1. Coacervation of 120 μ g/ml tropoelastin at 37 °C in the presence of 20 μ g/ml of (A) heparin, (B) heparin 10-mer, (C) heparin 8-mer, (D) heparin 6-mer, (E) heparin 4-mer, (F) heparin 2-mer and (G) in the absence of heparin.




Fig. 2. Coacervation of 120 μ g/ml tropoelastin at 37 °C in the presence of (A) 10-mer, (B) 8-mer and (C) 6-mer heparin.

300

Time (sec)

400

200

Fig. 3. Tropoelastin (120 μ g/ml) coacervation in the presence of 20 μ g/ml of heparin (\blacksquare), 10-mer (\blacktriangle), 8-mer (\spadesuit), 6-mer (\spadesuit), and in the absence of heparin (\blacktriangledown).

Download English Version:

https://daneshyari.com/en/article/2145016

Download Persian Version:

https://daneshyari.com/article/2145016

<u>Daneshyari.com</u>