

## Contents lists available at SciVerse ScienceDirect Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis



journal homepage: www.elsevier.com/locate/molmut Community address: www.elsevier.com/locate/mutres

# Collaborating functions of BLM and DNA topoisomerase I in regulating human *rDNA* transcription

### Patrick M. Grierson, Samir Acharya\*, Joanna Groden

Department of Microbiology, Immunology and Medical Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA

#### ARTICLE INFO

Article history: Received 22 August 2012 Received in revised form 7 December 2012 Accepted 8 December 2012 Available online 19 December 2012

Keywords: BLM helicase DNA topoisomerase I *rRNA* transcription Bloom's syndrome Nucleolus RNA polymerase I

#### ABSTRACT

Bloom's syndrome (BS) is an inherited disorder caused by loss of function of the recQ-like BLM helicase. It is characterized clinically by severe growth retardation and cancer predisposition. BLM localizes to PML nuclear bodies and to the nucleolus; its deficiency results in increased intra- and inter-chromosomal recombination, including hyper-recombination of *rDNA* repeats. Our previous work has shown that BLM facilitates RNA polymerase I-mediated *rRNA* transcription in the nucleolus (Grierson et al., 2012 [18]). This study uses protein co-immunoprecipitation and *in vitro* transcription/translation (IVTT) to identify a direct interaction of DNA topoisomerase I with the C-terminus of BLM in the nucleolus. *In vitro* helicase assays demonstrate that DNA topoisomerase I stimulates BLM helicase activity on a nucleolar-relevant RNA:DNA hybrid, but has an insignificant effect on BLM helicase activity of DNA topoisomerase I on super-coiled DNA substrates. Our study suggests that BLM and DNA topoisomerase I function coordinately to modulate RNA:DNA hybrid formation as well as relaxation of DNA supercoils in the context of nucleolar transcription.

© 2012 Elsevier B.V. All rights reserved.

#### 1. Introduction

Human cells in interphase contain several nucleoli, sub-nuclear structures that contain the highly repetitive ribosomal DNA (rDNA) genes mapping to the satellite regions of the acrocentric chromosomes. Nucleolar rDNA associates with the nucleolar-dedicated RNA polymerase I and numerous other proteins required for ribosome biogenesis. The predominant function of nucleoli is the transcription of ribosomal RNA (rRNA) from rDNA, occurring during S- and G2-phases of the cell cycle [1,2]. Nascent rRNAs generated during RNA polymerase I-mediated rRNA transcription have a tendency to re-associate with template rDNA and form rRNA:rDNA hybrids that can inhibit rRNA transcription and facilitate rDNA recombination (reviewed in [3]). DNA topoisomerase I, a component of the RNA polymerase I transcription complex, relaxes the negative and positive supercoiling associated with rRNA transcription and prevents the formation of inhibitory rRNA:rDNA hybrids [4-8].

Bloom's syndrome (BS), an inherited disorder characterized by a high predisposition to cancer and severe growth retardation, is caused by loss of function of the BLM helicase [9]. BLM belongs to the conserved recQ subfamily of ATP-dependent 3'-5'helicases [10,11]. It localizes to the nucleolus and binds *rDNA*  [12–14]. The C-terminus of BLM is required for its nucleolar retention and *rDNA* binding within the *18S*-coding region and the intergenic spacers (IGS) [13,14]. BLM deficiency leads to hyperrecombination within *rDNA* [15,16] and a reduction of overall *rDNA* repeat numbers in comparison to wild-type cells [13,14]. Hyperrecombination within *rDNA* generates extra-chromosomal *rDNA* circles (ERC), the accumulation of which is associated with aging in *Saccharomyces cerevisiae* [17]. BLM-deficient cells display *rDNA* hyper-recombination [15,16], while some of the clinical characteristics of BS are suggestive of aging. These observations first suggested that nucleolar BLM maintains the stability of *rDNA via* direct binding to *rDNA* and implicate it in *rDNA* metabolism.

Our previous work demonstrated that BLM is a component of the RNA polymerase I transcription complex and unwinds RNA:DNA hybrids with 3' overhangs of DNA [18]. It also suggested that BLM and DNA topoisomerase I may cooperatively function to limit the accumulation of *rRNA:rDNA* hybrids in the nucleolus. Here, we report that BLM interacts directly with DNA topoisomerase I. Protein co-immunoprecipitation from nuclear extracts and sub-fractionated nuclei from cultured cells demonstrate that this interaction occurs in nucleoli. Purified recombinant proteins co-immunoprecipitate *in vitro*, while *in vitro* transcription/translation (IVTT) coupled to immunoprecipitation demonstrates that the interaction is mediated by a domain within the C-terminus of BLM. We show using helicase assays that DNA topoisomerase I stimulates BLM helicase activity on a GC-rich *rDNA*-like RNA<sub>20</sub>:DNA<sub>33</sub> duplex substrate that models a co-transcriptionally formed *rRNA:rDNA* 

<sup>\*</sup> Corresponding author. Tel.: +1 614 292 4426; fax: +1 614 688 8675. *E-mail address:* samir.acharya@osumc.edu (S. Acharya).

<sup>0027-5107/\$ -</sup> see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.mrfmmm.2012.12.002

hybrid, but does not do so on a DNA<sub>20</sub>:DNA<sub>33</sub> substrate. Finally, we show that BLM stimulates the DNA relaxation activity of topoisomerase I. Our data suggest that BLM and DNA topoisomerase I interact and cooperate to promote efficient *rRNA* transcription by RNA polymerase I.

#### 2. Materials and methods

#### 2.1. Cell lines

MCF7 and HEK 293T cells were obtained from ATCC and cultured in Dulbecco's modified Eagle medium (Invitrogen) containing 10% fetal bovine serum (Hyclone). All cells were cultured at 37  $^\circ$ C and 5% CO<sub>2</sub>.

#### 2.2. Nucleolar isolation

Nucleoli were isolated from 293T cells according to the protocol of the Lamond Lab (www.lamondlab.com). Briefly, proliferating 293T cells were harvested by trypsinization, washed in PBS, re-suspended in buffer A (10 mM HEPES, pH7.9, 10 mM KCl, 1.5 mM MgCl<sub>2</sub>, 0.5 mM DTT) and incubated on ice for 5 min. Cell suspensions were homogenized until approximately 90% of the cells were disrupted to produce intact nuclei. Lysis was monitored by light microscopy. Homogenized suspensions were centrifuged at 218 × g for 5 min at 4 °C, nuclear pellets re-suspended in 3 ml of S1 solution (0.25 M sucrose, 10 mM MgCl<sub>2</sub>), layered over 3 ml of S2 solution (0.38 M sucrose, 0.5 mM MgCl<sub>2</sub>), and centrifuged at 1430 × g for 5 min at 4 °C. Resultant nuclear pellets were re-suspended in 3 ml of S2 solution of nucleoli was monitored by light microscopy. Resultant nucleolar suspensions were layered over 3 ml of S3 solution (0.88 M sucrose, 0.5 mM MgCl<sub>2</sub>), centrifuged at 3000 × g for 10 min at 4 °C and re-suspended in 500  $\mu$ l of S2 solution.

#### 2.3. Protein co-immunoprecipitation

Protein co-immunoprecipitations used 293T nuclear lysates prepared according to published protocols [19] or nucleolar and nucleoplasmic lysates prepared as described above. Antibodies used in co-immunoprecipitation included  $\alpha$ BLM (Santa Cruz Biotech, sc-7790) and  $\alpha$ DNA topoisomerase I (Bethyl, A302-589A). Protein–antibody complexes were captured with Dynabeads Protein G (Invitrogen, 100-04D), washed, eluted and separated by 8% SDS-PAGE, and detected using standard western blotting procedures using  $\alpha$ BLM (Bethyl Laboratories, A300-110A),  $\alpha$ RPA194 (Santa Cruz Biotech, sc-48385) and  $\alpha$ RNA polymerase II (Abcam, ab817).

#### 2.4. Protein purification

*pYES-BLM* expression vector (*pJK1*) was kindly provided by Ian Hickson [11]. BLM was purified as previously described [19], with an additional heparin-sepharose purification step. Briefly, hexa-histidine (6X-His)-tagged BLM was over-expressed in *S. cerevisiae*. Yeast were lysed at 20k psi using a French Press Cell Disrupter (Thermo) and lysates were separated by ultracentrifugation at 65,000 × g for 1 h at 4 °C. Cleared lysates were purified by FPLC using Ni-NTA Superflow (Qiagen), followed by Heparin-Sepharose 6 Fast Flow (Amersham Biosciences) and finally Q-Sepharose (Sigma). Purity of the resultant BLM was determined by 8% SDS-PAGE, staining of gels with SYPRO Ruby Protein Gel Stain (Sigma) and analysis using ImageQuant software. The helicase-dead mutant BLM<sup>K695E</sup> was purified by batch purification [19,20].

#### 2.5. In vitro transcription/translation (IVTT)

IVTT reactions were performed according to Lillard-Wetherell et al. [21]. Briefly, *pET24D-BLM-N*, *pET24D-BLM-H* and *pET24D-BLM-C* were used in IVTT according to manufacturer's instructions (TNT Rabbit Reticulocyte Lysate kit, Promega). IVTT products were mixed with full-length wild-type human DNA topoisomerase I (Topogen) according to published protocols [22] and incubated for 2 h at 4 °C with rotation. Subsequently, αDNA topoisomerase I (Bethyl, A302-589A) was added with an additional 2 h incubation at 4 °C. Finally, Dynabeads Protein G (Invitrogen, 100-04D) were added for 2 h at 4 °C, washed 5 times with binding buffer, eluted with 1 × SDS-PAGE sample buffer, separated on 10% SDS-PAGE, dried and imaged using ImageQuant software.

#### 2.6. Helicase assays

Oligonucleotides were purchased from Invitrogen. Oligonucleotide sequences (5'-3' orientation) are as follows: DNA<sub>20</sub>-CGCTAGCAATATTCTGCAGC, DNA<sub>33</sub>-GCTGCAGAATATTGCTAGCGGGAATTCGGCGCG and RNA<sub>20</sub>-CGCUAGCAAUAUUCUGCAGC. RNA<sub>20</sub> and DNA<sub>20</sub> were <sup>32</sup>P end-labeled using polynucleotide kinase (PNK; NEB) according to manufacturer's instructions. Duplex substrates were generated by heating to 95 °C for 5 min and slow cooling. Helicase assays were performed as previously described [18]. Helicase products were

separated on 12% non-denaturing polyacrylamide gels, dried and analyzed using ImageQuant software.

#### 2.7. Toposiomerase I assays

DNA relaxation assays mediated by human DNA topoisomerase I (Topogen) were performed as described [23] in reaction buffer supplied by the manufacturer (10 mM Tris-HCl pH 7.9, 1 mM EDTA, 150 mM NaCl, 0.1% BSA, 0.1 mM spermidine, 5% glycerol). 200 ng replicative form I (RFI) DNA [24] was used in 20 µl reactions containing various dilutions of human DNA topoisomerase I in the presence or absence of purified BLM or helicase-dead mutant BLMK695E [20]. The only measure of activity for BLM after purification is helicase unwinding. In the case of wild-type protein a loss of unwinding activity was observed upon dilution. Since there is no direct measure of the activity of the mutant as it is helicase-dead, for the topoisomerase I stimulation assays, higher concentrations of the mutant were used to overcome any loss of activity occurring upon dilution of protein as the reason for a potential negative result (Supplementary Figure 3). The mutant was diluted to the same extent as wild-type BLM. Reactions were stopped at various intervals of time (10-30 min) in stop buffer and analyzed on a 1.3% agarose gel in TAE buffer as described [23]. Gels were stained by ethidium bromide and the DNA bands were quantitated by Image] software. The relative fold-stimulation of topoisomerase I activity by BLM was estimated by dividing the ratio of products (topoisomers) to substrate (RF I) in the presence of BLM by that in its absence for each reaction.

#### 3. Results

# 3.1. BLM interacts with DNA topoisomerase I from nuclear and nucleolar-enriched extracts

Our recent study revealed a novel role for BLM in facilitating RNA polymerase I-mediated rRNA transcription via interaction with RNA polymerase I and resolution of RNA-DNA hybrid structures formed during transcription [18]. This role is consistent with localization of BLM in the nucleolus [12] and suggests its participation in nucleolar DNA metabolism and subsequent effects on ribosome biogenesis and protein production. DNA topoisomerase I is a component of the RNA polymerase I transcription complex and facilitates efficient rRNA transcription in bacteria, yeast and human cells [7,8,25] by relaxation of DNA supercoils and prevention of RNA-DNA hybrids generated during transcription. Therefore, we asked whether BLM and DNA topoisomerase I interact with each other (Fig. 1A, Supplementary Figure 1a). Nuclear extracts from two cell lines, MCF7 and 293T, were used to test for co-immunoprecipitation using anti-BLM ( $\alpha$ BLM) or anti-DNA topoisomerase I ( $\alpha$ DNA topoisomerase I) antibodies. Fig. 1A shows that each antibody immunoprecipitated both BLM and DNA topoisomerase I. Control immunoprecipitation experiments using αBLM or αDNA topoisomerase I antibodies and nuclear extracts from Bloom's syndrome cell line GM8505 did not immunoprecipitate topoisomerase I or BLM, respectively (data not shown). These results are consistent with BLM and DNA topoisomerase I interactions and their role in a common RNA polymerase I-associated complex (see Fig. 1C) [18].

As BLM and DNA topoisomerase I localize to the nucleolus and the nucleoplasm, we asked whether the BLM-DNA topoisomerase I interaction occurs specifically in the nucleolus. Nuclei were fractionated into nucleoli and nucleoplasm (Fig. 1B) and the resultant sub-nuclear fractions used in co-immunoprecipitation experiments with *aBLM* antibodies. The RNA polymerase I-specific subunit RPA194 was used as a nucleolar marker, RNA polymerase II as a nucleoplasmic marker and  $\beta$ -actin as a cytoplasmic marker (Fig. 1B). Results from coimmunoprecipitation experiments using the sub-nuclear fractions showed specific interactions of BLM with DNA topoisomerase I and RNA polymerase I subunit RPA194 in fractions from nucleoli (Fig. 1C, Supplementary Figure 1c). These results suggest that their function may be specific to nucleolar metabolism and are consistent with the presence of a majority of BLM in the nucleolar fraction (Fig. 1B).

Download English Version:

https://daneshyari.com/en/article/2146432

Download Persian Version:

https://daneshyari.com/article/2146432

Daneshyari.com