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A B S T R A C T

Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic

tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-

like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB)

domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder

with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we

review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular

and organismal levels.

Representative point mutations associated with Marfan syndrome in affected individuals have been

introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a

structural and functional level. Mutations which impair folding of cbEGF domains can affect protein

trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant

fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many

Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some

mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An

extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense

mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome.

Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights

into the pathogenic molecular mechanisms exerted by mutated fibrillin-1.

� 2015 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Marfan syndrome

Marfan syndrome is a heritable autosomal-dominant connec-
tive tissue disorder with a prevalence of 2–3 in 10,000 individuals
[1]. It affects many different organ systems, most importantly large
blood vessels, bones, and eyes. Major clinical manifestations
include aortic aneurysms and dissections, long bone overgrowth,
scoliosis, and ectopia lentis. Aortic aneurysms and dissections can
be life-threatening if not monitored and treated adequately. The
genetic defect that leads to Marfan syndrome was mapped to
chromosome 15 where the fibrillin-1 gene (FBN1) is located
[2]. Mutations in this gene have been shown to give rise to Marfan
syndrome [3] (see Section 1.3). More than 1800 different muta-
tions have been identified in FBN1, most of which are associated
with the clinical phenotype of Marfan syndrome (http://www.
umd.be/FBN1) [4]. Marfan syndrome is characterized by a wide
inter- and intrafamilial phenotypic variability. Therefore, it is
crucial to better understand the structural and functional
consequences of mutations on the fibrillin-1 protein.

1.2. Structure and function of fibrillin-1

1.2.1. Fibrillin-1 is a multidomain protein

Fibrillin-1 is a member of the fibrillin family of �350 kDa
glycoproteins that are the major components of microfibrils in the
extracellular matrix of elastic and non-elastic tissues [5]. The
fibrillin family encompasses three highly homologous proteins in
higher vertebrates, fibrillin-1, fibrillin-2 and fibrillin-3. Fibrillin-1
expression persists into adulthood, whereas fibrillin-2 and -3 are
mainly expressed during development [6–8].

Fibrillin-1 is a multi-domain protein mainly composed of
epidermal growth factor-like (EGF) domains (Fig. 1) [9]. 43 out of
the 47 EGF-like domains in fibrillin-1 contain the calcium binding
(cb) consensus sequence D/N-X-D/N-E/Q-Xm-D/N-Xn-Y/F with m

and n being variable numbers of amino acid residues (Fig. 2). The
residues of this consensus sequence either directly ligate calcium
or stabilize the calcium binding site [10–12]. Calcium binding to
fibrillin-1 is important for the structure and function of the protein.
It provides structural stabilization [13–15], protects the protein
against proteolysis [16], and controls interaction with a variety
of extracellular matrix components [17–21]. Calcium binding
together with hydrophobic packing interactions is a key structural
component that restricts interdomain flexibility and allows for the
characteristic rigid rod-like shape of fibrillin-1 [13,22,23]. Each
cbEGF domain is stabilized by the formation of three disulfide
bonds between the six cysteine residues in each domain in a
C1–C3, C2–C4 and C5–C6 pattern [13,24].

The cbEGF domains are interspersed mainly by two other types
of domains, transforming growth factor beta binding protein-like

(TB) and hybrid (Hyb) domains [9]. TB domains occur seven times
in vertebrate fibrillins, and contain eight cysteine residues that
form disulfide bonds in a C1–C3, C2–C6, C4–C7 and C5–C8 pattern
[25]. Hyb domains are found only twice in all mammalian fibrillins.
They show similarities with TB domains in their N-terminal region
and with cbEGF domains in their C-terminal region [9,26,27]. Other
protein domains in fibrillin-1 include the unique N-and C-terminal
domains, as well as a proline-rich domain close to the N-terminus.

1.2.2. Fibrillin-1 constitutes the core of microfibrils

Fibrillins are the major backbone components of microfibrils in
elastic and non-elastic tissues [5]. Microfibrils confer structural
integrity, for example in ciliary zonules of the ocular system or
along basement zones in various tissues such as skin and kidney
[28,29]. In elastic tissues including blood vessels, lung and skin,
microfibrils act as a scaffold for the deposition of tropoelastin, a key
regulatory mechanism in elastogenesis [30]. Importantly, micro-
fibrils play a major role in regulating the bioavailability of growth
factors of the transforming growth factor beta (TGF-b)/bone
morphogenetic protein (BMP) family. Dysregulation of TGF-b is an
important contributor to the pathogenesis in Marfan syndrome
and related disorders [31]. This molecular phenotype can be
antagonized and rescued in a Marfan mouse model by losartan, an
angiotensin II type 1 receptor blocker [32]. The beneficial effects of
losartan in Marfan patients were analyzed in various clinical trials
[33,34]. However, the largest study so far with over 600 children
and young adults affected with Marfan syndrome showed no
significant difference between the treatment with losartan and
atenolol in regard to the rate of aortic dilatation over a period of
3 years [35]. Atenolol is a beta-blocker that has been used for many
years as a standard care for patients with Marfan syndrome [36].

1.3. Mutations in fibrillin-1

Mutations in fibrillin-1 give rise to a number of connective
tissue disorders, collectively termed type I fibrillinopathies. The
most common disorders caused by mutations in fibrillin-1 are
various forms of Marfan syndrome, including the common classical
form, the severe so-called ‘‘neonatal’’ form with early disease
onset, and the progeroid form [3,37,38]. Other disorders caused by
fibrillin-1 mutations include dominant Weill–Marchesani syn-
drome [39], acromicric and geleophysic dysplasia [40], dominant
ectopia lentis [41], and stiff skin syndrome [42]. Although all of
these disorders arise from mutations in fibrillin-1, they manifest
with wide phenotypic differences. For example, patients with
Marfan syndrome are typically characterized by long bone
overgrowth, ectopia lentis and joint hyperflexibility, whereas
dominant Weill–Marchesani syndrome presents with short
stature, spherophakia with glaucoma, and joint stiffness.

A large genotype-phenotype study correlated the position of
FBN1 mutations with the associated clinical features and severity
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