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A B S T R A C T

Mutations in four of the ten human small heat shock proteins (sHSP) are associated with various forms of

motor neuropathies and myopathies. In HspB1, HspB3, and HspB8 all known mutations cause motor

neuropathies, whereas in HspB5 they cause myopathies. Several features are common to the majority of

these mutations: (i) they are missense mutations, (ii) most associated disease phenotypes exhibit a

dominant inheritance pattern and late disease onset, (iii) in the primary protein sequences, the sites of

most mutations are located in the conserved a-crystallin domain and the variable C-terminal extensions,

and (iv) most human mutation sites are highly conserved among the vertebrate orthologs and have been

historically exposed to significant purifying selection. In contrast, a minor fraction of these mutations

deviate from these rules: they are (i) frame shifting, nonsense, or elongation mutations, (ii) associated

with recessive or early onset disease phenotypes, (iii) positioned in the N-terminal domain of the

proteins, and (iv) less conserved among the vertebrates and were historically not subject to a strong

selective pressure. In several vertebrate sHSPs (including primate sHSPs), homologous sites differ from

the human sequence and occasionally even encode the same amino acid residues that cause the disease

in humans. Apparently, a number of these mutations sites are not crucial for the protein function in

single species or entire taxa, and single species even seem to have adopted mechanisms that compensate

for potentially adverse effects of ‘mutant-like’ sHSPs. The disease-associated dominant sHSP missense

mutations have a number of cellular consequences that are consistent with gain-of-function

mechanisms of genetic dominance: dominant-negative effects, the formation of cytotoxic amyloid

protein oligomers and precipitates, disruption of cytoskeletal networks, and increased downstream

enzymatic activities. Future therapeutic concepts should aim for reducing these adverse effects of

mutant sHSPs in patients. Indeed, initial experimental results are encouraging.
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1. Introduction

The human genome encodes ten small heat shock proteins
(sHSP), now systematically designated as HspB1 through HspB10
[1–3]. The defining feature of this protein superfamily is the
presence of a characteristic stretch of �85 amino acid residues, the
so-called a-crystallin domain, regardless of whether the expression
of these genes is regulated by heat or other stress factors [4,5]. The a-
crystallin domain typically is flanked 50 by a variable central
region and a less conserved N-terminal domain, and 30 by a
variable C-terminal extension (Fig. 1) [1]. Proteins without the a-
crystallin domain do not qualify for membership in this protein
family, even if overall sequence similarity with sHSPs is detectable
[6]. In evolution, sHSPs have been recruited for quite diverse
functions resulting in their involvement in many cellular
processes including light refraction, apoptosis and growth control
(carcinogenesis), protection of tissues and organs from stress,
oxidative homeostasis, regulation of the organization of the
cytoskeleton, muscle contraction and relaxation, chaperoning,
proteolysis, neuron development, and others [5,7–9]. In spite of
this growing body of knowledge, the details of their cellular roles
are not completely understood.

Since the first identification of a myopathy-associated missense
mutation in HspB5 more than a decade ago [10], the number of
reported mutations in sHSPs (HspB1, HspB3, HspB5, HspB8) that
affect the functions of muscles or motor neurons has grown to
more than 30 (Table 1). Even though the precise molecular and
cellular consequences of the sHSP mutations are incompletely
understood, they demonstrate the crucial roles of this group of
proteins in both muscles and motor neurons. This effect was not
entirely unexpected, as data accumulated in the preceding decades
on the importance of sHSPs for the physiology of both muscular
and neuronal tissues [11–13]. Among the disease-causing muta-
tions, the majority are missense mutations associated with a
dominant disease phenotype. In addition to the sHSP mutations
with clearly associated diseases, sequence variants with unclear
disease association have been found, representing mutations with
low penetrance or rare polymorphisms. For example, a variant of

HspB6 is suspected to be associated with the impaired ability of the
heart to cope with pathological stress [14].

The evolutionary history of sHSPs seems to be different from
that of other analyzed protein superfamilies in that the various
domains and regions of the proteins have evolved independently
[15]. sHSPs are found in all domains of life: archaea, bacteria, fungi,
and other eukaryotes including metazoa and plants, suggesting
their emergence early in evolution. All metazoan sHSPs seem to
have evolved from the same single ancestral sequence [15]. In
contrast, the shaping of the variable N- and C-terminal regions that
border the a-crystallin domain on both sides took place many
times in parallel throughout evolution, but independent of the
evolution of the a-crystallin domain [15]. Whereas the reason for
this peculiarity of sHSP evolution is unknown, this pattern may
complicate the analysis of the evolutionary history of the mutation
sites in human sHSPs (see Sections 2.3 and 3.1.3.5). Another
specific feature of the evolution of the sHSPs is the absence of
recombination events with domains that are common to other
protein families, typically resulting in multidomain proteins. This
pattern suggests that the functional specification of the sHSPs was
achieved by the variation of the terminal sequences without the
concomitant diversification of the a-crystallin domain [15,16]. In
this light, it is remarkable that the known mutations in a given
sHSP result in similar disease phenotypes, no matter which region
of the molecule is affected by the mutation (Fig. 1 and Table 1).

In this study, we sought to identify common and disparate
features of the myopathy- and neuropathy-associated sHSP
mutations, and to elucidate the evolutionary history of the
mutation sites. On this basis, conclusions are drawn for future
therapeutic approaches to the associated disorders.

2. Methods

2.1. Identification of vertebrate sHSPs with similarity to human

HspB1, HspB3, HspB5, HspB6, and HspB8

Gnathostomata (Vertebrata: Gnathostomata) sHSP-like sequences
with significant similarity to human HspB1, HspB3, HspB5, HspB6,
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