J. Chem. Thermodynamics 88 (2015) 22-29

Contents lists available at ScienceDirect

J. Chem. Thermodynamics

journal homepage: www.elsevier.com/locate/jct

CrossMark

Phase behavior of ionic liquids 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides with halogenated benzenes

A. Siporska*, J. Szydłowski

Faculty of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland

ARTICLE INFO

Article history: Received 7 August 2014 Received in revised form 21 March 2015 Accepted 8 April 2015 Available online 17 April 2015

Keywords: Isotope effect Miscibility Ionic liquid (Liquid + liquid) equilibrium Halogenated benzene

ABSTRACT

(Liquid + liquid) miscibility temperatures as a function of composition have been determined experimentally for the binary systems formed by imidazolium based ionic liquids with bis(trifluoromethylsulfonyl)imide ([C_n MIM][NTf₂]: n = 3 to 10) with fluorobenzene, chlorobenzene, bromobenzene, iodobenzene and 1,2-dichlorobenzene have been obtained. All the measured systems show the limited miscibility with the upper critical solution temperature behavior. Similarly to the other systems with the imidazolium cation the increase of the alkyl chain length in this cation improves the miscibility. The impact of the halogenobenzene < fluorobenzene. The miscibility is improving in the order: iodobenzene < bromobenzene < chlorobenzene < fluorobenzene. This arrangement corresponds to the decreasing molar volume of the substituted benzenes. The disubstituted chlorobenzene is a better solvent for ionic liquids than chlorobenzene. The replacement of hydrogen for deuterium in halogenobenzenes in all cases improves the miscibility and the isotope shifts of the UCSTs are very large.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In our previous studies on the phase behavior of the imidazolium based ionic liquids (IL) with bis(trifluoromethylsulfonyl)imide anion with benzene [1] we observed interesting and rather unusual phase behavior. Changing the alkyl side chain in the imidazolium cation it was possible to pass from almost immiscible system through the LCST type phase behavior to "hourglass" configuration and after that reaching finally the typical UCST type phase diagrams. The recent extensive studies [2-4] of the (liquid + liquid) phase equilibria and other thermodynamic properties of 1-ethyl-3-methylimdazolium bis(trifluoromethylsulfonyl)imide ([C₂MIM][NTf₂]) with halogenated benzenes also revealed interesting phase behavior. In general, monosubstituted halogenobenzenes [3] show the limited miscibility and immiscibility gap increases in the following order: F < Cl < Br < I. No direct correlation of the miscibility with dipole moments has been found and the authors point for other intermolecular interactions, like higher-order moments, in particular quadrupole moment of the aromatic ring, π -electrons and hydrogen bonding which may play an essential role in controlling the miscibility. On the other hand

for di- and multisubstituted fluorobenzenes some correlations with the dipole moment have been suggested although the phase behavior is even more differential - changing from the complete miscibility to almost immiscible system. The full phase diagram was constructed for [C₂MIM][NTf₂] + 1,2,4-trifluorobenzene system only. For other cases only parts of the coexistence curve could be shown, however its curvature suggests that eventual phase diagram could correspond to the LCST behavior. It should also mention here the theoretical study performed by Shimizu et al. [5] in the system composing of the same ionic liquid and multisubstituted fluorobenzenes. Basing on their molecular dynamic simulations and appropriate ab initio calculations they were able to show the important role of the multipole moments, in particular the importance of the largest component of the principal-axes quadrupole moment in the solubility behavior of the system studied.

Assuming that the general rule, showing that the miscibility is improving with the increasing length of the side alkyl chain in the imidazolium cation, still holds we decided to extend the miscibility study for other imidazolium cations with alkyl chain ranging from C_2 to C_{10} with various monohalogenated benzenes. These studies will be complemented by the examination of the impact of deuteration in the aromatic solvents on their miscibility with ionic liquids.

^{*} Corresponding author. E-mail address: asipor@chem.uw.edu.pl (A. Siporska).

TABLE 1

Experimental (liquid + liquid) equilibrium mass fractions *w*, mole fractions *x* and temperatures *T* for the systems $[C_x MIM][NTf_2]^a$ or $[C_n MIM][NTf_2](1)$ + halogenated benzene (2) at pressure p = 0.1 MPa.^b

C _{2.37} [MIM][NTf ₂]/C ₆ H ₅ F					C _{2.62} [MIM][NTf ₂]/C ₆ H ₅ F			
w_1	<i>X</i> ₁		T/K		<i>w</i> ₁	<i>x</i> ₁	<i>x</i> ₁	
			[C _x MIM][I	$[C_{x}MIM][NTf_{2}](1) + fluorobenzene(2)$				
0.2247	0.2247 0.0651		299.2	299.2 0.2233		0.065	2	357.2
$[C_4MIM][NTf_2]/C_6H_5CI$		$[C_4MIM][NIf_2]$	$[C_4 MIM][NTt_2]/C_6 D_5 CI$		$[C_5MIM][NIf_2]/C_6H_5CI$		<u> </u>	
<i>w</i> ₁	X_1	T/K	<i>w</i> ₁	<i>x</i> ₁	T/K	<i>w</i> ₁	<i>x</i> ₁	T/K
$[C_nMIM][NTf_2](1) + chlorobenzene(2)$								
0.0959	0.0277	340.0	0.0995	0.0300	325.6	0.0780	0.0215	275.1
0.1025	0.0297	341.0	0.1070	0.0325	326.9	0.0844	0.0234	276.2
0.1163	0.0341	343.0	0.1148	0.0351	328.1	0.0964	0.0233	277.9
0.1230	0.0362	343.7	0.1301	0.0402	329.1	0.1018	0.0286	278.4
0.1344	0.0400	344.3	0.1440	0.0450	329.7	0.1109	0.0314	278.8
0.1448	0.0435	344.9	0.1566	0.0495	330.0	0.1246	0.0357	279.3
0.1581	0.0480	345.3	0.1665	0.0530	330.2	0.1381	0.0399	279.5
0.1711	0.0525	345.5	0.1824	0.0588	330.3	0.1515	0.0445	279.5
0.1967	0.0616	345.7	0.2108	0.0696	329.8	0.1722	0.0512	279.5
0.2089	0.0662	345.5	0.2185	0.0727	329.5	0.1788	0.0535	279.5
0.2192	0.0700	345.0	0.2276	0.0763	328.9	0.1934	0.0586	279.4
0.2273	0.0731	344.6	0.2407	0.0816	328.1	0.2023	0.0618	279.0
0.2392	0.0778	344.0	0.2538	0.0870	326.4	0.2129	0.0656	278.6
0.2378	0.0852	342.9 341 A	0.2018	0.0904	325.1	0.2217	0.0089	278.U 277.6
0.2755	0.0920	339.9				0.2237	0.0724	277.0
0.2031	0.0500	555.5				0.2412	0.0762	276.3
						0.2447	0.0776	275.8
[C.MIM][NTf_]/C_H_Br			[C_MIM][NTf_]	[C.MIM][NTf_]/C_ D-Br			[C_MIM][NTf_]/C_H_Br	
	v	TIV		7060501			J/ C6115 D1	
w	A1	1/K	w1		1/K	<i>w</i> ₁	x1	1/K
0.0994	0.0250	200.0	[C _n MIM][N	VTf_2 (1) + bromobe	nzene (2)	0.0682	0.0259	224.2
0.0884	0.0350	390.7	0.0802	0.0320	3753	0.0682	0.0258	335 0
0.0955	0.0380	391.7	0.0901	0.0368	375.8	0.0805	0.0307	336.0
0.1021	0.0408	392.6	0.0994	0.0409	376.9	0.0872	0.0334	336.6
0.1055	0.0423	392.9	0.1045	0.0431	377.6	0.0921	0.0354	337.1
0.1123	0.0452	393.6	0.1116	0.0463	378.4	0.1005	0.0389	337.7
0.1223	0.0495	394.2	0.1219	0.0509	378.9	0.1115	0.0435	338.1
0.1319	0.0538	394.5	0.1308	0.0549	379.0	0.1229	0.0483	338.3
0.1529	0.0633	394.7	0.1617	0.0693	379.0	0.1558	0.0626	338.3
0.1618	0.0674	394.7	0.1708	0.0737	379.0	0.1699	0.0690	338.1
0.1688	0.0707	394.7	0.1755	0.0759	379.0	0.1878	0.0773	337.5
0.1790	0.0754	394.6	0.1886	0.0824	378.8	0.1961	0.0812	337.0
0.1869	0.0792	394.4	0.2005	0.0883	378.0	0.2095	0.0876	336.1
0.1975	0.0843	394.1 303 s	0.2145	0.0954	375 G	0.2102	0.0908	335.4 334 1
0.2113	0.0911	393.3	0.2366	0.1069	373.9	1 622.0	0.0342	554.1
0.2175	0.0942	393.0			2.0.0			
0.2236	0.0973	392.6						
0.2308	0.1009	392.1						
0.2350	0.1031	391.6						
0.2447	0.1081	390.3 388 7						
0.2340	0.1155	500.7						
$[C_5MIM][NTf_2]$	/C ₆ D₅Br			[C ₆ MIM][NTf ₂]/C ₆ H ₅ Br				
<i>w</i> ₁	2	X ₁	T/K		<i>w</i> ₁	<i>x</i> ₁		T/K
0.0694	(0.0271	316.9		0.0581	0.021	2	287.4
0.0727	(0.0285	317.6		0.0614	0.022	4	288.0
0.0789	(J.U310 2.0258	318.9		0.0685	0.025	1	289.0
0.0904	().0423	319.0 320 3		0.0723	0.026	6	289.5 290.2
0.1195	(0.0483	320.5		0.0863	0.032	- 1	290.9
0.1326	(0.0540	320.6		0.0957	0.035	8	291.4
0.1454	(0.0598	320.5		0.1012	0.038	0	291.6
0.1574	(0.0652	320.4		0.1113	0.042	1	291.8
0.1061	(J.U693 1 0741	320.3		0.1218	0.046	4 2	291.8
0.1845	(0.0780	319.6		0.1339	0.049	5	291.0
0.1951	(0.0831	318.7		0.1450	0.056	1	291.6
							(continue	ed on next nave
							Continue	on nem puge)

Download English Version:

https://daneshyari.com/en/article/215167

Download Persian Version:

https://daneshyari.com/article/215167

Daneshyari.com