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a b s t r a c t

The (liquid + liquid) equilibrium of solutions of hyperbranched polymers of the Boltorn type is modeled
in the framework of lattice-cluster theory. The association effects are described by the chemical associ-
ation models CALM (for self association) and ECALM (for cross association). For the first time the molar
mass polydispersity of the hyperbranched polymers is taken into account. For this purpose continuous
thermodynamics is applied. Because the segment-molar excess Gibbs free energy depends on the number
average of the segment number of the polymer the treatment is more general than in previous papers on
continuous thermodynamics. The polydispersity is described by a generalized Schulz–Flory distribution.
The calculation of the cloud-point curve reduces to two equations that have to be numerically solved.
Conditions for the calculation of the spinodal curve and of the critical point are derived. The calculated
results are compared to experimental data taken from the literature. For Boltorn solutions in non-polar
solvents the polydispersity influence is small. In all other of the considered cases polydispersity influ-
ences the (liquid + liquid) equilibrium considerably. However, association and polydispersity influence
phase equilibrium in a complex manner. Taking polydispersity into account the accuracy of the calcula-
tions is improved, especially, in the diluted region.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the importance of hyperbranched polymers (HBPs)
has continuously increased. These polymers with a tree-like struc-
ture can be easily synthesized via one-step reactions. The branch-
ing influences considerably the thermodynamic properties. In
comparison with linear polymers HBPs show a reduced viscosity
in solutions and in melts and a high solubility in common solvents.
Their properties may be tailored by modification of the numerous
end groups. There are many possible applications for these materi-
als [1–10].

Most HBPs possess a large number of terminal hydroxyl groups.
To calculate the (liquid + liquid) equilibrium (LLE) of HBP solutions
one has to describe simultaneously the branching influence, the
association effects and the polydispersity influence. A suitable
branching treatment is given by the lattice-cluster theory (LCT),
developed by Freed and co-workers [11–16]. In last years LCT
has been successfully applied to the calculation of the LLE of HBP
solutions [17–28]. In this, the original voluminous equations of
the LCT were step by step simplified. Now, the architecture of a

molecule may be described by three geometrical parameters only.
Furthermore, association terms were included [19–25]. Either
these terms were based on Wertheim’s theory [19,21–24] or on
chemical association models [20,25]. Therefore, branching and
association in HBP solutions may be adequately described. How-
ever, polydispersity effects were generally neglected. On the one
hand, this originates from the lack of experimental information.
On the other hand, a suitable theoretical treatment had to be
developed. In this paper we take the molar mass polydispersity
into account. Žagar et al. [29] studied experimentally HBPs of the
Boltorn type including also values of the number average and of
the weight average of molar mass. So, the most important charac-
terization parameters of molar mass polydispersity are approxi-
mately known. Introducing some approximations that are
suitable to polymer solutions our equations are simplified in a
way permitting an extension to the polydisperse case. In this, the
association effects are described by the chemical association mod-
els CALM in the case of self association [20,30] and ECALM
[20,25,31], if also cross association occurs. The theoretical treat-
ment of polydispersity is based on continuous thermodynamics
[32–35]. Because the segment-molar excess Gibbs free energy
depends on the number average of the segment number the
treatment is somewhat more complicated than in previous papers
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dealing with continuous thermodynamics. We derive equations for
the calculation of the cloud-point curve, of the spinodal curve and
of the critical point. For several solutions of Boltorn polymers the
cloud-point curve and the critical point are calculated and com-
pared to the experimental data. We will show that the consider-
ation of polydispersity improves the accuracy of the description.
Especially, the relatively high experimental cloud-point tempera-
tures for diluted Boltorn solutions may be explained by the molar
mass polydispersity of the polymers.

2. Theory

2.1. Lattice-cluster theory and chemical association theories

In the framework of continuous thermodynamics [32–35] the
segment-molar Gibbs free energy DGs (without the pure compo-
nent contributions) reads

DGs

RT
¼ /A

rA
ln /A þ

Z 1

0

1
rB

/BWBðrBÞ ln½/BWBðrBÞ�drB þ
GE

s

RT
;

/A ¼ 1� /B: ð1Þ

The first two terms of equation (1) represent the well-known
athermal Flory–Huggins contribution. T is the temperature and R
is the universal gas constant. GE

s is the segment-molar excess Gibbs
free energy describing the intermolecular interactions. /A is the
segment fraction of the solvent and /B is the total segment fraction
of the polymer. rA, rB are the segment numbers of the solvent mol-
ecules and of the polymer species. WB(rB) is the segment-molar dis-
tribution function of the polymer. It is the continuous analogy to
the segment fraction of a certain polymer species if there is no sol-
vent but many other polymer species. The general moment �rðaÞB of
the distribution function is defined as

�rðaÞB ¼
Z 1

0
ðrBÞaWBðrBÞdrB; a ¼ �1;0;1;2;3; . . . ð2Þ

There are two important special moments. The first of them cor-
responds to the normalization condition of the distribution func-
tion expressed by �rð0ÞB ¼ 1. Furthermore, the number average of
the segment number �rB is given by �rB ¼ 1=�rð�1Þ

B . The most of the
previous papers [32–35] on continuous thermodynamics assume
GE

s to be only a function of /B and T. However, the segment-molar
excess Gibbs free energy can be a functional of WB(rB) meaning GE

s

can be dependent on moments of the distribution function. In this
paper we will show that based on the lattice-cluster theory (LCT)
and on the applied association models GE

s depends on �rB in the fol-
lowing way

GE
s

RT
¼ Aþ B

/B

�rB
; ð3Þ

where the quantities A and B are functions of /B and T. In this
paper we calculate A and B generally on the base of the lattice-clus-
ter theory including association effects. Here, we distinguish
between the following four cases: Disregarding of association
effects (section 2.1.1), consideration of self association for solutions
of HBPs in non-polar solvents (section 2.1.2), assumption of cross
associates and self associates of the solvent molecules (section
2.1.3), assumption of cross associates and self associates of the
polymer molecules (section 2.1.4).

2.1.1. Disregarding of association effects
Here, only the LCT is applied. Freed et al. [11–16] introduced the

LCT taking the architecture of the molecules into account. They
expanded the Helmholtz free energy in a double power series of
1/z and e/(kBT). The quantity z is the coordination number of the

lattice, kB is the Boltzmann constant and e is defined by
e = eAA + eBB � 2eAB.

eAA, eBB and eAB characterize the interaction energies of contact
pairs of the type AA, BB and AB. The quantity e/(kBT) relates to
the usual v -parameter of the Flory–Huggins theory by v = ze/
(2kBT). The series expansion is truncated after the second order
terms in 1/z and in e/(kBT). The treatment assumes an incompress-
ible lattice and results for a binary system in [17–27]

GE
s

RT
¼
Xi¼6

i¼1

ai/
i
B: ð4Þ

The sum with the quantities ai (i = 1, 2, . . . , 6) takes the archi-
tecture of the molecules into account (the equations for ai are
listed in appendix A). Originally, the architecture of the B-mole-
cules was described by the six geometric parameters K1, K2, . . . K6

and that of the A-molecules by L1, L2, . . . L6 [7–14]. However the
geometric parameters are connected by the relations [5,10,15–17]

K1 þ 2K2 þ 2K5 � K2
1rB ¼ 0; ð5aÞ

2K2 þ 2K3 þ 3K4 þ K6 � K1K2rB ¼ 0 ð5bÞ

and

L1 þ 2L2 þ 2L5 � L2
1rA ¼ 0; ð6aÞ

2L2 þ 2L3 þ 3L4 þ L6 � L1L2rA ¼ 0: ð6bÞ

Because of these equations the quantities ai (appendix A) contain
only the geometrical parameters K1, K2, K3 and L1, L2, L3. Further-
more, the segment numbers rA and rB do not occur in ai explicitly.
The parameters K1, K2, K3 and L1, L2, L3 are defined by

K1 ¼ N1;B=rB; K2 ¼ N2;B=rB; K3 ¼ N3;B=rB; ð7aÞ

L1 ¼ N1;A=rA; L2 ¼ N2;A=rA; L3 ¼ N3;A=rA: ð7bÞ

For a chain of segments of the type i = A, B the quantity N1;i is
the number of bonds, N2;i is the number of two consecutive bonds
and N3;i is the number of three consecutive bonds. In the case of the
small solvent molecules A these numbers may be easily counted.
To calculate them for the polymer molecules one needs only the
segment number rB and the numbers b3;B and b4;B of branching
points of degrees 3 and 4 (points in which 3 or 4 chains meet
together). There are the following relations [5]

K1 ¼ ðrB � 1Þ=rB; ð8aÞ

K2 ¼ ðrB � 2þ b3;B þ 3b4;BÞ=rB; ð8bÞ

K3 ¼ ðrB � 3þ 2b3;B þ 6b4;BÞ=rB: ð8cÞ

Equation (8a) is valid without any restriction. Equation (8b)
may be applied for all molecules with two or more segments.
Equation (8c) requires that all branches of the chain contain at
least two bonds. For most HBPs this condition is fulfilled. If the seg-
ment number of the HBP is sufficiently high equations (8a)–(8c)
may be replaced in very good approximation by

K1 ¼ 1; ð9aÞ

K2 ¼ 1þ ~b3 þ 3~b4; ð9bÞ

K3 ¼ 1þ 2~b3 þ 6~b4: ð9cÞ

Here, ~b3 ¼ b3;B=rB and ~b4 ¼ b4;B=rB may be approximately considered
to be independent of the segment number rB. For instance, in the
case of the Boltorn polymers H20, H30, H40 one can show
~b3 � 1=4 and ~b4 � 0 [7]. The LCT is derived for hypercubic lattices
in d dimensions for which z = 2d. For the interesting case d = 3 the
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