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a b s t r a c t

If an initially homogeneous system at high temperature is rapidly cooled, a temporary para-equilibrium
state may result in which rapidly diffusing elements have reached equilibrium but more slowly diffusing
elements have remained essentially immobile. The best known example occurs when homogeneous aus-
tenite is quenched. A para-equilibrium phase assemblage may be calculated thermodynamically by Gibbs
free energy minimization under the constraint that the ratios of the slowly diffusing elements are the
same in all phases. Several examples of calculated para-equilibrium phase diagram sections are pre-
sented and the application of the Phase Rule is discussed. Although the rules governing the geometry
of these diagrams may appear at first to be somewhat different from those for full equilibrium phase dia-
grams, it is shown that in fact they obey exactly the same rules with the following provision. Since the
molar ratios of non-diffusing elements are the same in all phases at para-equilibrium, these ratios act,
as far as the geometry of the diagram is concerned, like ‘‘potential’’ variables (such as T, pressure or chem-
ical potentials) rather than like ‘‘normal’’ composition variables which need not be the same in all phases.
A general algorithm to calculate para-equilibrium phase diagrams is presented. In the limit, if a para-
equilibrium calculation is performed under the constraint that no elements diffuse, then the resultant
phase diagram shows the single phase with the minimum Gibbs free energy at any point on the diagram;
such calculations are of interest in physical vapor deposition when deposition is so rapid that phase
separation does not occur.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In certain solid systems, some elements diffuse much faster
than others. Hence, if an initially homogeneous single-phase sys-
tem at high temperature is rapidly cooled and then held at a lower
temperature, a temporary para-equilibrium state may result in
which the rapidly diffusing elements have reached equilibrium
but the more slowly diffusing elements have remained essentially
immobile [1–3]. The best known and most industrially important
example occurs when homogeneous austenite is quenched and an-
nealed; interstitial elements such as C and N are much more mo-
bile than the metallic elements. Of course, in reality some
diffusion of the metallic elements will always occur [2], so that
para-equilibrium is a limiting state which is never fully realized
but may, nevertheless, be reasonably closely approached in many
cases.

The present article discusses the thermodynamic calculation of
para-equilibrium and para-equilibrium phase diagrams and the
geometrical rules governing the latter (that is, the application of
the Phase Rule to para-equilibrium phase diagrams).

The FactSage 6.4 thermodynamic software [4] calculates the
conditions for full thermodynamic equilibrium (sometimes called
ortho-equilibrium) by Gibbs free energy minimization, taking data
from databases which contain optimized thermodynamic model
parameters giving the Gibbs free energy of all phases as functions
of temperature and composition. These model parameters have
been obtained by critical evaluation of literature data. The FactSage
thermodynamic software can calculate and plot equilibrium phase
diagrams through the repeated systematic application of the Gibbs
free energy minimization algorithm.

At para-equilibrium, the ratios of the slowly diffusing elements
are the same in all phases and are equal to their ratios in the initial
single-phase high-temperature alloy. Hence, the calculation of
para-equilibrium simply involves modifying the Gibbs free energy
minimization algorithm by the addition of this constraint. This will
be discussed in detail in Section 5. Para-equilibrium phase diagram
sections can subsequently be calculated by exactly the same proce-
dure as is used to calculate full equilibrium phase diagrams as will
be discussed in Section 4.

In the limit, if a para-equilibrium calculation is performed un-
der the constraint that no elements diffuse, then the ratios of all
elements remain the same as in the initial homogeneous high-tem-
perature state. Hence, such a calculation will simply yield the
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single homogeneous phase with the minimum Gibbs free energy at
the temperature and overall composition of the calculation. Such
calculations are of practical interest in physical vapor deposition
(PVD) when deposition from the vapor phase is so rapid that phase
separation does not occur, resulting in a single-phase solid deposit.
The calculation of minimum Gibbs free energy phase diagrams will
be discussed in Section 3.

In the following section, the application of the Phase rule to
para-equilibrium phase diagrams is discussed.

2. The geometry of para-equilibrium phase diagram sections

All figures shown in this article were calculated with the Fact-
Sage 6.4 software [4], with thermodynamic data taken from the
FactSage FSstel steel database. In all calculations the formation of
graphite has been suppressed.

In the (Fe + Cr + C) system at elevated temperatures the range of
homogeneous austenite (FCC) extends from pure Fe to approxi-
mately 8 mol% C and 15 mol% Cr as can be seen in the (full
ortho-equilibrium) isothermal phase diagram section at 1140 �C
in figure 1. Alloys with compositions within this range when
cooled rapidly and then held at a lower temperature may exhibit
a temporary para-equilibrium state. A vertical section of the same
(full ortho-equilibrium) (Fe + Cr + C) phase diagram section is
shown in figure 2 where the molar ratio C/(Fe + Cr) is plotted ver-
sus temperature, T, at a constant molar metal ratio Cr/
(Fe + Cr) = 0.04. (On figures 1 and 2 and other figures, M23C6,
M7C3 and Cementite are solutions of Fe and Cr carbides.)

Before discussing the geometry of para-equilibrium phase dia-
grams, we should recall the Law of Adjoining Phase Regions (LAPR)
[5–7] which applies to all single-valued phase diagram sections:
‘‘As a phase boundary line is crossed, one and only one phase either
appears or disappears.’’ (In phase diagrams involving axes other
than temperature and composition, such as pressure, volume and
chemical potential, it is possible to define the axes in such a way
that the diagram is not single-valued in every region. In this case
the LAPR does not apply in these regions [6,7]. However, diagrams
with temperature and composition as axes are always single-val-
ued and the LAPR always applies.) An examination of figures 1
and 2 will show that the LAPR applies to every phase boundary.
Although the isothermal lines abc and def in figure 2 might, at first,
appear to be exceptions to the rule, these lines are not simple
phase boundaries but are, rather, infinitely narrow four-phase
fields with coincident upper and lower phase boundaries. For

example, the line abc is an infinitely narrow (FCC + BCC + M7C3 +
Cementite) field where the four phases co-exist. Hence, the LAPR
applies. The Phase Rule, at constant total pressure, may be written:

F ¼ C � P þ 1; ð1Þ

where C = number of components, P = number of phases and
F = number of degrees of freedom (variance). In the three-compo-
nent (Fe + Cr + C) system when four phases are at equilibrium, F = 0.

Hence, the line abc represents an invariant equilibrium which
occurs at only one temperature.

Since a para-equilibrium calculation simply involves an addi-
tional constraint, the LAPR also applies to para-equilibrium phase
diagram sections.

In figure 3 is shown the para-equilibrium phase diagram for ex-
actly the same section as in figure 2, calculated for the case where
C is the only diffusing element. Since the molar ratio Cr/
(Fe + Cr) = 0.04 is now constant and the same in every phase, the
diagram in this particular example resembles a full (ortho) equilib-
rium T-composition phase diagram of a two-component system,
the ‘‘components’’ being Fe0.96Cr0.04 and C. The three-phase
(FCC + BCC + Cementite) region bcd now appears as an isothermal
invariant, similar to a binary eutectoid.
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FIGURE 1. Full equilibrium phase diagram section of the (Fe + Cr + C) system
showing tie-lines. Mole fraction XC versus mole fraction XCr at constant T = 1140 �C.
(Formation of graphite suppressed.)
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FIGURE 2. Full equilibrium phase diagram section of the (Fe + Cr + C) system. Molar
ratio C/(Fe + Cr) versus T at constant mole ratio Cr/(Fe + Cr) = 0.04. (Formation of
graphite suppressed.)

FCC

FCC + BCC CEMENTITE + FCC

CEMENTITE + BCC

BCC

a

b
c

d
706.3 

o

Mole ratio C/(Fe+Cr)

t/C
o

0 0.01 0.02 0.03 0.04 0.05 0.06
300

400

500

600

700

800

900

1000

1100

FIGURE 3. Para-equilibrium phase diagram section of the (Fe + Cr + C) system when
C is the only diffusing element. Plot of mole ratio C/(Fe + Cr) versus T at constant
mole ratio Cr/(Fe + Cr) = 0.04. (Formation of graphite suppressed.)
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