



NUCLEAR MEDICINE — AND — BIOLOGY

Nuclear Medicine and Biology 36 (2009) 11-16

www.elsevier.com/locate/nucmedbio

# Dopamine transporter binding in rat striatum: a comparison of $[O\text{-methyl-}^{11}C]\beta\text{-CFT}$ and $[N\text{-methyl-}^{11}C]\beta\text{-CFT}$

Karmen K. Yoder<sup>a</sup>, Gary D. Hutchins<sup>a</sup>, Bruce H. Mock<sup>a</sup>, Xiangshu Fei<sup>a</sup>, Wendy L. Winkle<sup>a</sup>, Bruce D. Gitter<sup>b</sup>, Paul R. Territo<sup>b</sup>, Qi-Huang Zheng<sup>a,\*</sup>

<sup>a</sup>Department of Radiology, Indiana University School of Medicine, L3-208, Indianapolis, IN 46202, USA

<sup>b</sup>Lilly Center for Anatomical and Molecular Imaging, Integrative Biology Division, Lilly Research Laboratories, Greenfield, IN 46140, USA

Received 11 June 2008; received in revised form 13 August 2008; accepted 15 October 2008

#### Abstract

**Introduction:** Positron emission tomography scanning with radiolabeled phenyltropane cocaine analogs is important for quantifying the in vivo density of monoamine transporters, including the dopamine transporter (DAT). [ $^{11}$ C] $\beta$ -CFT is useful for studying DAT as a marker of dopaminergic innervation in animal models of psychiatric and neurological disorders. [ $^{11}$ C] $\beta$ -CFT is commonly labeled at the *N*-methyl position. However, labeling of [ $^{11}$ C] $\beta$ -CFT at the *O*-methyl position is a simpler procedure and results in a shorter synthesis time [desirable in small-animal studies, where specific activity (SA) is crucial]. In this study, we sought to validate that the *O*-methylated form of [ $^{11}$ C] $\beta$ -CFT provides equivalent quantitative results to that of the more commonly reported *N*-methyl form.

**Methods:** Four female Sprague—Dawley rats were scanned twice on the IndyPET II small-animal scanner, once with [N-methyl- $^{11}$ C] $\beta$ -CFT and once with [O-methyl- $^{11}$ C] $\beta$ -CFT. DAT binding potentials (BP $\equiv B'_{avail}/K_d$ ) were estimated for right and left striata with a nonlinear least-squares algorithm, using a reference region (cerebellum) as the input function.

**Results:** [*N*-Methyl- $^{11}$ C]β-CFT and [*O*-methyl- $^{11}$ C]β-CFT were synthesized with 40–50% radiochemical yields (HPLC purification). Radiochemical purity was >99%. SA at end of bombardment was 258±30 GBq/μmol. Average BP values for right and left striata with [*N*-methyl- $^{11}$ C]β-CFT were 1.16±0.08 and 1.23±0.14, respectively. BP values for [*O*-methyl- $^{11}$ C]β-CFT were 1.18±0.08 (right) and 1.22±0.16 (left). Paired *t* tests demonstrated that labeling position did not affect striatal DAT BP.

**Conclusions:** These results suggest that [O-methyl- $^{11}C]\beta$ -CFT is quantitatively equivalent to [N-methyl- $^{11}C]\beta$ -CFT in the rat striatum. © 2009 Elsevier Inc. All rights reserved.

Keywords: Positron emission tomography; Dopamine transporter; [11C]β-CFT; Striatum; Dopamine; Animal models

#### 1. Introduction

Positron emission tomography (PET) scanning with radiolabeled phenyltropane cocaine analogs allows quantification of in vivo neuronal monoamine uptake sites. The most commonly employed radioligands,  $\beta$ -CIT [2 $\beta$ -carbomethoxy-3 $\beta$ -(4'-iodophenyl)tropane, RTI-55] [1] and  $\beta$ -CFT [2 $\beta$ -carbomethoxy-3 $\beta$ -(4'-fluorophenyl)tropane, WIN 35,428 (3)] [2], have a high affinity for the dopamine transporter (DAT) and are used as markers for striatal central dopaminergic innervation [3–10]. [11C] $\beta$ -CFT is widely

used to study DAT in animal models of psychiatric and neurological disorders and in human diseases such as Parkinson's disease [11–13]. The *N*-methylated form of [ $^{11}$ C] $\beta$ -CFT is more commonly seen in the literature, as the precursor used for radiolabeling, nor- $\beta$ -CFT [ $^{2}\beta$ -carbomethoxy- $^{3}\beta$ -(4'-fluorophenyl)nortropane (5)], is commercially available. However, it is more cost-effective to synthesize precursor de novo. We pursued the use of [ $^{0}$ -methyl- $^{11}$ C] $\beta$ -CFT [ $^{13}$ - $^{15}$ ] for several reasons: (a) the synthesis of  $\beta$ -CFT-acid [ $^{2}\beta$ -carboxylic acid- $^{3}\beta$ -(4'-fluorophenyl)tropane (4)] for the production of [ $^{0}$ -methyl- $^{11}$ C] $\beta$ -CFT is simpler than that of nor- $\beta$ -CFT; (b) synthesis of  $\beta$ -CFT-acid results in higher chemical yields than the synthesis of nor- $\beta$ -CFT; and (c) labeling of [ $^{11}$ C] $\beta$ -CFT at the  $^{0}$ -methyl position results in a slightly shorter synthesis

<sup>\*</sup> Corresponding author. Tel.: +1 317 278 4671; fax: +1 317 278 9711. E-mail address: qzheng@iupui.edu (Q.-H. Zheng).

time, which is advantageous in small-animal PET studies where specific activity (SA) is crucial.

Our group and others have successfully labeled the cocaine congener  $\beta$ -CIT at both nitrogren and oxygen positions [16,17]. Lundkvist et al. [17] reported that the late-time striatum:cerebellum ratios were similar for [*N*-methyl-<sup>11</sup>C] $\beta$ -CIT and [*O*-methyl-<sup>11</sup>C] $\beta$ -CIT. As  $\beta$ -CIT is chemically similar to  $\beta$ -CFT, the semiquantitative observation of Lundkvist et al. suggests that [*N*-methyl-<sup>11</sup>C] $\beta$ -CFT and [*O*-methyl-<sup>11</sup>C] $\beta$ -CFT may produce similar estimates of DAT binding. The purpose of this study was to determine if estimates of DAT binding in rat striata with [<sup>11</sup>C] $\beta$ -CFT labeled at the *O*-methyl-<sup>10</sup>C] $\beta$ -CFT.

#### 2. Materials and methods

#### 2.1. General

All commercial reagents and solvents were used without further purification. [11C]Methyl triflate ([11C]CH3OTf) was prepared according to a literature procedure [18]. <sup>1</sup>H NMR spectra were recorded on a Bruker QE 300 NMR spectrometer using tetramethylsilane (TMS) as an internal standard. Chemical shift data for the proton resonances were reported in parts per million ( $\delta$  scale) relative to internal standard TMS ( $\delta$  0.0), and coupling constants (J) were reported in hertz. All moisture- and/or air-sensitive reactions were performed under a positive pressure of nitrogen maintained by a direct line from a nitrogen source. Analytical HPLC was performed using a Prodigy (Phenomenex) 5-µm C-18 column, 4.6×250 mm; 3:1:3 CH<sub>3</sub>CN/MeOH/20 mM, pH 6.7, phosphate (buffer solution) mobile phase; 1.5 ml/min flow rate; and UV (254 nm) and gamma ray (NaI) flow detectors. Semipreparative HPLC was performed using a YMC-Pack ODS-A, S-5 µm, 12 nm, 10×250 mm i.d. (Waters) C-18 column; 20% EtOH/80% 20 mM H<sub>3</sub>PO<sub>4</sub> mobile phase, 5.0 ml/min flow rate, UV (254 nm) and gamma ray (NaI) flow detectors. Sterile Millex-GS 0.22 µm vented filter unit was obtained from Millipore Corporation (Bedford, MA).

The overall scheme of synthesis is depicted in Fig. 1.

### 2.1.1. Precursors and β-CFT standard syntheses

Hydrolysis of cocaine under acid conditions gave 2β-carboxylic acid-3β-hydroxytropane (1), which was used in the next step reaction without further purification. Compound 1 was reacted with POCl<sub>3</sub> and MeOH to provide anhydroecgonine methyl ester (2) in 86% yield [16,19]. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  6.81 (t, 1H, J=3.0 Hz), 3.78 (d, 1H, J=5.6 Hz), 3.74 (s, 3H, OCH<sub>3</sub>), 3.24 (t, 1H, J=5.4 Hz), 2.69–2.62 (d, br, 1H, J=19.8 Hz), 2.35 (s, 3H, NCH<sub>3</sub>), 2.20–2.07 (m, 2H), 1.88–1.81 (dd, 1H, J=19.8 Hz, 4.0 Hz), 1.80–1.26 (m, 2H).

The conjugate addition of Grignard reagent 4-fluorophenylmagnesium bromide to Compound 2 after acid workup [19] formed a mixture of two phenyltropane isomers: the biologically potent  $\beta$ -CFT (Compound 3) and the less

biologically-active 2α-carbomethoxy-3β-(4'-fluorophenyl) tropane (α-CFT) [20] (45% and 17% yields, respectively). In addition to being an intermediate in the synthesis of precursors, β-CFT served as the standard compound. β-CFT  $^1$ H NMR (CDCl<sub>3</sub>):  $\delta$  7.23–7.19 (m, 2H), 6.98–6.92 (m, 2H), 3.57–3.55 (m, 1H), 3.50 (s, 3H, OCH<sub>3</sub>), 3.38–3.37 (d, br, 1H, J=3.0 Hz), 3.02–2.94 (m, 1H), 2.88–2.86 (d, br, 1H, J=6.0 Hz), 2.63–2.53 (m, 1H), 2.23 (s, 3H, NCH<sub>3</sub>), 2.18–2.03 (m, 2H), 1.78–1.56 (m, 3H). α-CFT  $^1$ H NMR (CDCl<sub>3</sub>):  $\delta$  7.25–7.20 (m, 2H), 6.97–6.91 (m, 2H), 3.51 (s, 3H, OCH<sub>3</sub>), 3.44–3.42 (d, br, 1H, J=6.0 Hz), 3.28–3.26 (m, 1H), 3.12–3.09 (m, 2H), 2.42 (s, 3H, NCH<sub>3</sub>), 2.14–2.08 (ddd, 1H, J=18.0 Hz), 1.98–1.82 (m, 3H), 1.76–1.58 (m, 2H).

Hydrolysis of β-CFT (Compound **3**) under neutral conditions (50% dioxane/H<sub>2</sub>O) [21] provided precursor β-CFT-acid (Compound **4**) in 97% yield.  $^{1}$ H NMR (CDCl<sub>3</sub>):  $\delta$  7.24–7.19 (m, 2H), 7.01–6.95 (m, 2H), 3.61–3.58 (m, 2H), 3.21–3.12 (m, 1H), 2.67–2.56 (m, 2H), 2.51 (s, 3H, NCH<sub>3</sub>), 2.31–2.28 (m, 2H), 2.01–1.94 (m, 2H), 1.82–1.74 (m, 1H).

*N*-Desmethylation of Compound **3** with 1-chloroethyl chloroformate [19] afforded another precursor, nor-β-CFT (Compound **5**), in 75% yield.  $^{1}$ H NMR (CDCl<sub>3</sub>):  $\delta$  7.18–7.15 (t, 2H, J=9.0 Hz), 6.97–6.94 (t, 2H, J=9.0 Hz), 3.78–3.59 (m, 2H), 3.40 (s, 3H, OCH<sub>3</sub>), 3.24–3.21 (m, 1H), 2.68–2.39 (m, 3H), 2.26–2.20 (m, 1H), 1.98–1.95 (m, 1H), 1.80–1.58 (m, 3H).

# 2.1.2. Radiochemistry of [O-methyl-<sup>11</sup>C]β-CFT and [N-methyl-<sup>11</sup>C]β-CFT

Radiosynthesis was performed in an automated, multipurpose <sup>11</sup>C-radiosynthesis module, which allows measurement of SA during synthesis [22,23]. [11C]CO2 was produced by the  $^{14}N(p,\alpha)^{11}C$  nuclear reaction in a smallvolume (9.5 cm<sup>3</sup>) aluminum gas target (CTI) from 11 MeV proton cyclotron on research purity nitrogen (+1% O<sub>2</sub>) in a Siemens radionuclide delivery system (Eclipse RDS-111). The precursor β-CFT-acid (Compound 4, 0.1 mg) was dissolved in CH<sub>3</sub>CN (300 µl). To this solution was added 3 N NaOH (2 µl). The mixture was transferred to a small reaction vial. No-carrier-added (high SA) [11C]CH<sub>3</sub>OTf that was produced by the gas-phase production method [18] from [11C]CO2 through [11C]CH4 and [11C]CH3Br with silver triflate (AgOTf) column was passed into the reaction vial, which was cooled to 0°C, until radioactivity reached a maximum (~2 min) and then the reaction vial was isolated and heated at 80°C for 3 min. The contents of the reaction tube were diluted with NaHCO<sub>3</sub> (1 ml, 0.1 M) and injected onto the semipreparative HPLC column with 2 ml injection loop. The product fraction was collected, the solvent was removed by rotatory evaporation under vacuum and the final product,  $[O\text{-methyl-}^{11}C]\beta\text{-CFT}$   $(O\text{-}[^{11}C]3)$ , was formulated in saline, sterile filtered through a sterile vented Millex-GS 0.22-µm cellulose acetate membrane and collected into a sterile vial containing 8% NaHCO<sub>3</sub> solution (0.25 ml) for adjustment of pH of the product. Total radioactivity was assayed and total volume was noted for

### Download English Version:

## https://daneshyari.com/en/article/2154308

Download Persian Version:

https://daneshyari.com/article/2154308

<u>Daneshyari.com</u>