

Available online at www.sciencedirect.com

Nuclear Medicine and Biology 33 (2006) 21-27

NUCLEAR MEDICINE – and – BIOLOGY

www.elsevier.com/locate/nucmedbio

Synthesis and evaluation of radioiodinated cyclooxygenase-2 inhibitors as potential SPECT tracers for cyclooxygenase-2 expression

Yuji Kuge^{a,*}, Yumiko Katada^a, Sayaka Shimonaka^a, Takashi Temma^a, Hiroyuki Kimura^a, Yasushi Kiyono^b, Chiaki Yokota^c, Kazuo Minematsu^d, Koh-ichi Seki^e, Nagara Tamaki^f, Kazue Ohkura^g, Hideo Saji^a

^aDepartment of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan

Radioisotopes Research Laboratory, Kyoto University Hospital, Faculty of Medicine, Kyoto University, Kyoto 606-8507, Japan

[°]Cerebrovascular Laboratory, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan

^dCerebrovascular Division, Department of Medicine, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan [°]Central Institute of Isotope Science, Hokkaido University, Hokkaido 060-8638, Japan

^tDepartment of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido 060-8638, Japan

^gDepartment of Radiopharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan Received 26 August 2005; received in revised form 30 September 2005; accepted 5 October 2005

Abstract

Although several COX-2 inhibitors have recently been radiolabeled, their potential for imaging COX-2 expression remains unclear. In particular, the sulfonamide moiety of COX-2 inhibitors may cause slow blood clearance of the radiotracer, due to its affinity for carbonic anhydrase (CA) in erythrocytes. Thus, we designed a methyl sulfone-type analogue, 5-(4-iodophenyl)-1-[4-(methylsulfonyl)phenyl]-3-trifluoromethyl-1*H*-pyrazole (IMTP). In this study, the potential of radioiodinated IMTP was assessed in comparison with a ¹²⁵I-labeled celecoxib analogue with a sulfonamide moiety (¹²⁵I-IATP).

Methods: The COX inhibitory potency was assessed by measuring COX-catalyzed oxidation by hydrogen peroxide. The biodistribution of ¹²⁵I-IMTP and ¹²⁵I-IATP was determined by the ex vivo tissue counting method in rats. Distribution of the labeled compounds to rat blood cells was measured.

Results: The COX-2 inhibitory potency of IMTP ($IC_{50}=5.16 \mu M$) and IATP ($IC_{50}=8.20 \mu M$) was higher than that of meloxicam ($IC_{50}=29.0 \mu M$) and comparable to that of SC-58125 ($IC_{50}=1.36 \mu M$). The IC_{50} ratios (COX-1/COX-2) indicated the high isoform selectivity of IMTP and IATP for COX-2. Significant levels of ¹²⁵I-IMTP and ¹²⁵I-IATP were observed in the kidneys and the brain (organs known to express COX-2). The blood clearance of ¹²⁵I-IMTP was much faster than that of ¹²⁵I-IATP. Distribution of ¹²⁵I-IATP to blood cells (88.0%) was markedly higher than that of ¹²⁵I-IMTP (18.1%), which was decreased by CA inhibitors.

Conclusions: Our results showed a high inhibitory potency and selectivity of IMTP for COX-2. The substitution of a sulfonamide moiety to a methyl sulfone moiety effectively improved the blood clearance of the compound, indicating the loss of the cross reactivity with CA in ¹²⁵I-IMTP. ¹²³I-IMTP may be a potential SPECT radiopharmaceutical for COX-2 expression.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Cyclooxygenase-2 (COX-2); Inhibitor; Radioiodination; SPECT; Radiopharmaceutical

1. Introduction

Cyclooxygenases (COXs) catalyse the key rate-limiting step in the conversion of arachidonic acid into prostaglandins and thromboxanes. To date, at least 2 distinct isoforms of the COXs—a constitutive form (COX-1) and an inducible isoform (COX-2)—and several of their variants have been discovered [1]. COX-1 is constitutively expressed in most tissues and is responsible for maintaining homeostasis, whereas COX-2 is induced in response to inflammatory stimuli. Besides being associated with inflammation, COX-2 has been implicated in a number of pathological processes, including many human cancers, atherosclerosis, and cerebral and cardiac ischemia [2–5]. We also reported

^{*} Corresponding author. Tel.: +81 75 753 4608; fax: +81 75 753 4568. *E-mail address:* kuge@pharm.kyoto-u.ac.jp (Y. Kuge).

^{0969-8051/\$ –} see front matter ${\rm \odot}$ 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.nucmedbio.2005.10.004

the neuronal expression of COX-2 in rodent and primate models of cerebral ischemia [6-10].

Accordingly, the noninvasive imaging of COX-2 expression should help in understanding the pathophysiology of the diseases and contribute to the clinical use of COX-2 inhibitors [11]. In this regard, several COX-2 inhibitors were recently radiolabeled with F-18 and their potentials for positron emission tomography (PET) tracers were preliminarily evaluated [12–14]. The results for the potentials of these labeled compounds, however, are not necessarily consistent from one laboratory to another. In addition, the short half-life of ¹⁸F may hamper the determination of the specific binding of the tracer to COX-2, because it is known

that the COX-2 inhibitors show time-dependent inhibition of COX-2 [11]. The longer half-lives of single photon emission tomography (SPECT) nuclides, such as Tc-99m or I-123, may be more suitable for radiotracers to image COX-2. From these points of view, we intended to develop radioiodinated COX-2 inhibitors as SPECT tracers for imaging COX-2 expression.

As for SPECT tracers, Yang et al. [15] proposed a ^{99m}Tc-labeled celecoxib (celebrex) analogue as a potential tracer for COX-2 expression. Kabalka et al. [16] recently reported the radiosynthesis of a ¹²³I-labeled celecoxib analogue. However, the detailed characteristics of these tracers, including affinity and selectivity to COX-2, have not

Fig. 1. Synthesis of IMTP (compound 3a), BMTP (compound 3b), IATP (compound 3c) and BATP (compound 3d).

- Compound 1a, iodoacetophenone
- Compound 1b, bromoacetophenone
- Compound 2a, 4,4,4-trifluoro-1-(4-iodophenyl)-butane-1,3-dione
- Compound 2b, 4,4,4-trifluoro-1-(4-bromophenyl)-butane-1,3-dione
- Compound 3a, 5-(4-iodophenyl)-1-[4-(methylsulfonyl)phenyl]-3-trifluoromethyl-1H-pyrazole

Compound 3b, 5-(4-bromophenyl)-1-[4-(methylsulfonyl)phenyl]-3-trifluoromethyl-1H-pyrazole

- Compound 3c, 5-(4-iodophenyl)-1-[4-(aminosulfonyl)phenyl]-3-trifluoromethyl-1H-pyrazole
- Compound 3d, 5-(4-bromophenyl)-1-[4-(aminosulfonyl)phenyl]-3-trifluoromethyl-1H-pyrazole

Download English Version:

https://daneshyari.com/en/article/2154919

Download Persian Version:

https://daneshyari.com/article/2154919

Daneshyari.com