J. Chem. Thermodynamics 67 (2013) 74-82

Contents lists available at ScienceDirect

J. Chem. Thermodynamics

journal homepage: www.elsevier.com/locate/jct

Solubility of Li₂CO₃ in Na-K-Li-Cl brines from 20 to 90 °C

Wenting Cheng^{a,*}, Zhibao Li^b, Fangqin Cheng^{a,*}

^a State Environmental Protection Key Laboratory on Efficient Resource-Utilization Techniques of Coal Waste, Institute of Resources and Environment Engineering, Shanxi University, Taiyuan 030006, PR China

^b Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China

ARTICLE INFO

Article history: Received 31 January 2013 Received in revised form 17 July 2013 Accepted 26 July 2013 Available online 6 August 2013

Keywords: Lithium carbonate Solubility Chemical modeling Pitzer activity coefficient model

ABSTRACT

The solubility of Li₂CO₃ in Na–K–Li–Cl brines was measured by isothermal dissolution method within the temperature range of 20 to 90 °C. It was found the solubility of Li₂CO₃ in all systems investigated decreased with increasing temperature. In NaCl and KCl solutions, the solubility of Li₂CO₃ initially increased to a maximum value and then decreased gradually with increasing solution concentration. However, the solubility of Li₂CO₃ in LiCl solutions decreased with increasing LiCl concentration due to the common ion effect of added Li⁺. New Pitzer activity coefficient model parameters for the Li⁺–CO₃^{2–} ion pair were obtained by using experimental solubility data of Li₂CO₃ in pure water, and a new chemical model was built with the aid of Aspen Plus platform. The new model was shown to successfully predict the solubility of Li₂CO₃ in NaCl, KCl, LiCl and mixed NaCl–KCl solutions. Moreover, the new model could aid in analyzing the separation of lithium and magnesium in brines.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays lithium and their compounds have mostly been extracted from salt lake brines [1–3] instead of producing from minerals due to the low expense, high purity and large-scale productions. The technique used in the separation of magnesium from concentrated lithium containing brines is described as follows. The brine is first contacted with a fatty alcohol dissolved in kerosene to extract boron. Then the nesquehonite (MgCO₃·3H₂O) is precipitated by adding sodium carbonate to the brine at low temperature [4,5]. After that, residual magnesium and sulfate ion are removed by precipitation with calcium oxide and liquid–solid separation. The liquor is then treated with sodium carbonate to precipitate lithium carbonate (Li₂CO₃) at high temperature.

The solubility and phase equilibrium phenomena play an important role in the development, design, optimization, and operation of separation process [6–9]. The dissolution and precipitation of substances in solutions are all controlled by the principles of solubility [10]. Therefore, the solubility of MgCO₃·3H₂O at low temperature as well as that of Li₂CO₃ at high temperature are important in separation of magnesium from concentrated lithium containing brines. As early as in 1915 Wells [11] determined the solubility of magnesium carbonate in nature waters. Recently, the solubility and stability of MgCO₃·3H₂O in NaCl, KCl, LiCl and MgCl₂ have been determined systematically by authors [8,9]. Broul *et al.* [12] reported the solubility of Li₂CO₃ in pure water over the temperature range of 0 to 100 °C. Smith *et al.* [13] measured the aqueous solubility of Li₂CO₃ between 100 and 300 °C and an equation was generated for calculating solubility. Deng *et al.* [14] determined the experimental solubility data and the relevant physicochemical property data of the Li⁺, Na⁺/Cl⁻, CO₃^{2–}-H₂O system at 298.15 K. Sang *et al.* [15] studied the metastable equilibria of the quinary system Li₂CO₃ + Na₂CO₃ + K₂CO₃ + Li₂B₄O₇ + Na₂B₄-O₇ + K₂B₄O₇ + H₂O at 288 K by isothermal evaporation method. However, the systematic solubility data of Li₂CO₃ in geologically relevant brines containing NaCl, KCl and LiCl were lacked.

Moreover, modeling of relationships between chemical speciation and phase equilibrium in aqueous electrolyte systems is of great importance in fundamental research involved in salt lake development and for the design of new chemical processes [16,17]. Numerous electrolyte solution models including those for the mixed-solvent systems have been reported in the literatures. Bromley-Zemaits activity coefficient model [18] was applied to predict the supersaturation of Mg₅(CO₃)₄(OH)₂·4H₂O in the MgCl₂-Na₂CO₃ system in supersaturated solutions over the temperature range of 50 to 90 °C by authors [19]. Graber et al. [20] used NRTL model [21] to correlate the equilibrium data for Li₂SO₄-PEG (polyethylene glycol) 4000-H₂O systems at 5, 25 and 45 °C. Taboada et al. [22] modeled the solubility of LiOH in ethanol-H₂O system at 25 °C with Chen's model [23,24], and the extended Pitzer-Debye-Huckel equation [25] was used to represent the long-range ion-ion interaction. Kwok et al. [26] predicted the thermodynamics of a simplified salt lake system Li⁺, Na⁺, K⁺, Mg²⁺/Cl⁻, SO₄²⁻-H₂O at 25 °C and 1 atm by UNIQUAC model and

^{*} Corresponding authors. Tel./fax: +86 351 7016893 (W. Cheng).

E-mail addresses: wenting_cheng@outlook.com (W. Cheng), cfangqin@hotmail.com (F. Cheng).

^{0021-9614/\$ -} see front matter \circledast 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.jct.2013.07.024

used the resulting phase diagram for recovering Li_2SO_4 ·H₂O. Recently, Ma *et al.* [27] developed a model for calculating the solubility of Friedel's Salt in the Na–OH–Cl–NO₃–H₂O systems over the temperature range from 20 to 200 °C with the help of the OLI platform. However, the solubility modeling of Li_2CO_3 in salt lake system Na–K–Li–Cl has not been investigated previously.

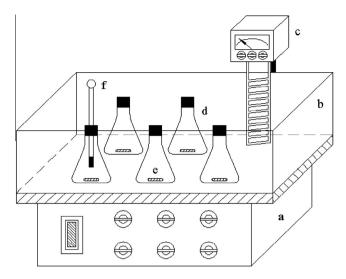
In this work, the isothermal dissolution method was used to determine the solubility of Li_2CO_3 in Na–K–Li–Cl brines. On the other hand, a chemical equilibrium model was developed to estimate the solubility of Li_2CO_3 in Na–K–Li–Cl brines with the aid of Aspen Plus platform. Pitzer parameters of the Li^+ – CO_3^{2-} ion pair were obtained by correlating solubility data of Li_2CO_3 in pure water. These new parameters were incorporated in Aspen platform to construct a new speciation model capable of representing the Li_2CO_3 solubility in Na–K–Li–Cl brines. Finally, the separation of lithium and magnesium in brines was analyzed with the aid of the newly developed model.

2. Experimental methods

2.1. Materials

All chemical reagents used in the experiments were analytical grade without further purification (table 1). The water used in all experimental work for solution preparation, dilution, crystal washing *etc.* was double distilled water (conductivity <0.1 μ S · cm⁻¹) unless otherwise specified.

2.2. Measurement of solubility


The dissolution method [28] is considered to be more reliable and feasible than other solubility determine approaches since it avoids the complication of formation of intermediate phases that is commonly encountered in precipitation. The solubility of Li₂CO₃ in Na–K–Li–Cl brines was determined by this method.

The experimental set-up employed in the determining of Li₂CO₃ solubility was shown in figure 1. The experiments were carried out in 250 ml iodine flasks, which were sealed with glass stoppers, containing 200 ml of known concentration of electrolyte solutions (NaCl, KCl, LiCl, etc.). The flasks were located in a water bath heated by a thermostatic heater/circulator. The solution temperature was monitored by a thermometer. The uncertainty in the measure of solution temperature was ±0.01 °C. Once the desired temperature was reached, excess solids (8 g of Li_2CO_3) were introduced to the electrolyte solutions in flasks and magnetic stirring initiated. The standard equilibration time used was 6 h (the determination of equilibration time was explained in the next section). After the (solid + liquid) equilibrium was attained, the supernatant solution was then withdrawn and immediately filtered by using $0.22 \,\mu m$ Whatman Puradisc syringe filters. Density measurements of Li₂₋ CO3-saturated solutions were performed with an Anton Paar DMA4500 (with an accuracy of $\pm 0.00005 \text{ g} \cdot \text{mL}^{-1}$). The content of C (carbon) was determined by TOC analyzer (TNM-1, Shimadzu Corporation) which was used to determine C of organic and inorganic substances in environmental applications. The uncertainty in the measure of the content of C is estimated to be less than

TABLE	1
-------	---

Chemical reagents employed.

Compound name	Formula	Provider	Purity (%)
Lithium carbonate	Li ₂ CO ₃	Strem Chemicals, Inc.	≥99.0
Sodium chloride	NaCl	Chemical Company of Beijing	≥99.5
Potassium chloride	KCl	Chemical Company of Beijing	≥99.5
Lithium chloride	LiCl	Strem Chemicals, Inc.	≥99.0

FIGURE 1. Experimental set-up used in the solubility measurement. (a) magnetic stirrer; (b) water bath; (c) thermostatic heater/circulator; (d) iodine flask; (e) magnetic rotor; (f) thermometer.

0.0001 g · L⁻¹. The solubility of Li₂CO₃, expressed as molality (mol · kg · H₂O⁻¹), was obtained from the C analysis. The solid phase was filtered and washed three times with water. The washed solids were dried at 60 °C for 12 h and then analyzed by X-ray powder diffraction to determine whether the solid phase had been altered by phase transformation. X-ray powder diffraction (XRD, X'Pert PRO MPD, PANalytical, Netherlands) patterns were recorded on a diffractometer (using Cu K α radiation) operating at 40 kV/ 30 mA. A scanning rate of 0.02° · s⁻¹ was applied to record the patterns in the 2 θ angle range from 10° to 80°.

2.3. Determination of equilibration time

The equilibration time in solubility measurements normally varies from several hours to several days depending on the dissolution rate of the solid phase and the applied conditions. [29] Li and Demopoulos [18] reported that the equilibration time of calcium sulfate dihydrate in HCl solution is 0.5 h. Authors [8] reported that the equilibrium of MgCO₃·3H₂O in solution could be reached within 3 h. The experimental results (section 4.1.1.) showed that the solubility equilibrium between Li₂CO₃ and solution could be obtained within 1 h. However, a longer time of 6 h was selected to ensure solubility equilibrium.

2.4. Reproducibility

The solubility experiments were conducted three times to check the reproducibility and accuracy of the adopted procedure in this work. The comparison of solubility values of Li_2CO_3 in pure water from the literature [12] with the experimental data in this study was shown in figure 2(b). As it can be observed, the comparison was satisfactory and the average deviation of the determined solubility values was $\pm 0.00127 \text{ mol} \cdot \text{kgH}_2\text{O}^{-1}$ with a relative deviation of 0.818%.

3. Chemical modeling approach

3.1. Thermodynamic equilibria of Na-K-Li-Cl-CO₃-H₂O system

In the Na–K–Li–Cl–CO₃–H₂O system, the following main solubility equilibrium is considered.

$$\text{Li}_2\text{CO}_3(s) \leftrightarrow 2\text{Li}^+(aq) + \text{CO}_3^{2-}(aq) \tag{1}$$

Download English Version:

https://daneshyari.com/en/article/215513

Download Persian Version:

https://daneshyari.com/article/215513

Daneshyari.com