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a b s t r a c t

The observed ‘‘flattened’’ shape of liquid miscibility gaps in binary alloys is not easily reproduced by a
simple Gibbs energy equation involving a random-mixing Bragg–Williams (BW) expression for the con-
figurational entropy and a polynomial expansion of the excess Gibbs energy since short-range-ordering
(SRO) is not taken into account. It is shown that accounting for the SRO through a simple application of
the modified quasi-chemical model (MQM) in the nearest-neighbour pair approximation is sufficient to
provide a good representation of miscibility gaps using only a very few temperature-independent coef-
ficients. For the many systems in which the only data available are the miscibility gap boundaries at
lower temperatures, the MQM can therefore provide a good prediction of the gap boundaries at higher
temperatures, as well as of the excess enthalpy. Furthermore, the MQM provides a significantly better
prediction of the miscibility gap in a ternary system based only upon optimized model parameters of
its three binary sub-systems than does the BW polynomial model. For binary systems in which deviations
from ideal behaviour are not too large, it is shown that the MQM can be approximated by one additional
term in the polynomial BW expression involving no additional empirical coefficients.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The molar Gibbs energy of binary liquid alloy solutions with
components A and B is often approximated by a regular solution
expression:

g ¼ ðXAgo
A þ XBgo

bÞ þ RTðXA ln XA þ XB ln XBÞ þ gE ð1Þ

with the molar excess Gibbs energy given as:

gE ¼ hE � TsE ¼ aAB XAXB ð2Þ

where Xi and go
i are the mole fraction and standard molar Gibbs en-

ergy of component i, R is the ideal gas constant, T is the absolute
temperature, and gE; hE and sE are the molar excess Gibbs energy,
enthalpy and entropy. The configurational entropy,
�R ðXA ln XA þ XB ln XBÞ, is obtained from the Bragg-Williams
assumption of random mixing of A and B on a quasilattice. If the
parameter aAB is positive, a miscibility gap results. (If aAB is con-
stant, independent of temperature and composition, then the con-
solute temperature of the gap can easily be shown to be given by
TC ¼ aAB=2R at XA ¼ XB ¼ 0:5:) In order to fit experimental phase
equilibrium and thermodynamic data and develop databases of
model parameters, aAB is usually expanded as an empirical
polynomial:

aAB ¼ 0LAB þ 1LABðXB � XAÞ þ 2LABðXB � XAÞ2 þ � � � ð3Þ

where the kLAB are empirical model parameters which may be func-
tions of T.In general, in order to reproduce adequately experimental
binary miscibility gaps, several empirical terms are required in
equation (3). If only two or three temperature-independent param-
eters are used, the resultant calculated gaps are usually significantly
higher and more rounded than experimental gaps which tend to be
‘‘flatter’’. As an example, the phase diagram of the Ga–Hg system is
shown in figure 1. The dashed line is the miscibility gap calculated
from equations (1)–(3) with the single parameter
oLAB = 9163 J �mol�1 (table 1) which was selected in order to repro-
duce the measured monotectic temperature (26.7 oC) and composi-
tions. As a second example, the Ga–Pb phase diagram is shown in
figure 2. Two temperature-independent parameters (aAB = 17950 +
1506ðXGa � XPbÞ J �mol�1) (table 1) were selected in order to repro-
duce the measured monotectic temperature and compositions. In
both figures 1 and 2, the calculated gaps, shown by the long dashed
lines labelled ‘‘BW (Bragg Williams) model’’, are clearly higher and
more rounded than the experimental values. In figures 3 and 4, the
long dashed lines show that the excess enthalpies, calculated with
the same parameters, are more positive than the experimental
values.

Of course, if experimental data are available for both the misci-
bility gap and the excess enthalpy, as is the case in these two sys-
tems, then the data can usually be fitted with equation (3) as long
as a sufficient number of terms is used. To obtain an acceptable fit
to the data in figures 1 and 3 for the (Ga + Hg) system, for example,
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it has been shown [11] that temperature-dependent parameters
aAB are required with a total of seven coefficients. The fact that
the parameters are temperature-dependent shows that the entro-
py is not adequately given by the ideal Bragg–Williams expression.
That is, sE is not negligible.

However, in most systems with liquid miscibility gaps only lim-
ited data are available. Generally the boundaries of the gaps have
been measured only at lower temperatures near the monotectic
temperature, not near the consolute temperature, and data for
the excess enthalpy are lacking. In such cases, the Bragg-Williams
model has no predictive ability as has been illustrated by the pre-
ceding examples. If empirical parameters are optimized based only
on the measured compositions of the boundaries of a miscibility
gap at lower temperatures, the resultant calculated gap will usu-
ally be much too high and rounded, and the calculated excess en-
thalpy will be too positive. Many such examples can be found in
the literature.

Moreover, as will be shown in Section 3, even if a complete set
of experimental data for a binary system is available and these data
have been adequately fitted to equation (3) (as was done [11] in
the (Ga + Hg) system using seven coefficients), subsequent at-
tempts to use these binary parameters to estimate thermodynamic
properties of ternary and higher-order liquid solutions will usually
give unsatisfactory results.

It is generally recognized that the failure of the simple Bragg-
Williams model to reproduce the observed ‘‘flattened’’ shape of
miscibility gaps is due to its neglect of short-range-order
(SRO).However, it is often stated [12] that a quantitative descrip-
tion can only be obtained through Renormalization Group Theory.
In the present article it will be shown that such sophistication is
not required. In fact, a simple application of quasi-chemical theory
in the nearest-neighbour pair approximation is usually sufficient.

2. Modified quasi-chemical model (MQM) in the nearest-
neighbour pair approximation

Consider a solution of atoms or molecules A and B which are
distributed over the sites of a quasi-lattice. A first-nearest-neigh-
bour pair exchange reaction can be written:

ðA� AÞpair þ ðB� BÞpair ¼ 2ðA� BÞpair; DgAB ð4Þ

If the Gibbs energy change DgAB of this reaction is positive, then (A–
A) and (B-B) pairs are favoured over (A–B) pairs. In the random-
mixing Bragg–Williams approximation, the probabilities of (A–A),
(B–B) and (A–B) pairs are always X2

A; X2
B, and 2XAXB respectively.

Hence, the system can only reduce the number of energetically
unfavourable (A–B) pairs by separating into two immiscible phases.
In reality, however, clustering of A and B can occur within a single-
phase solution, thereby permitting an increase in the number of
favourable (A–A) and (B–B) pairs without separation into two
phases. Such clustering will be most pronounced, and have the
greatest effect in lowering the Gibbs energy, in the central compo-
sition region where XA � XB. In the dilute terminal composition re-
gions, the configurational entropy terms predominate and so the
solution tends towards random mixing. As a result, SRO has the
largest effect on lowering the miscibility gap in the central compo-
sition region, thereby producing the observed ‘‘flattened’’ shape.

The quasi-chemical model, in the pair approximation, first
proposed by Fowler and Guggenheim [13] and later extended by
Blander, Pelton, Chartrand and co-workers [14–16], considers the
first-nearest-neighbour pair exchange reaction of equation (4).
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FIGURE 1. Ga–Hg phase diagram calculated with different models and experimen-
tal data points (see Refs. [1–3]).

TABLE 1
Model parameters used in calculations (J �mol�1) (BW = Bragg–Williams;
MQM = modified quasi-chemical model).

Z = 6

Ga–Hg BW a ¼ 9163
MQM Dgðz=2Þ ¼ 9790

Ga–Pb BW a ¼ 17950þ 1506ðXGa � XPbÞ
MQM Dgðz=2Þ ¼ 18263þ 1506ðXGa � XPbÞ

Ga–Tl BW a ¼ 16945þ 1506ðXGa � XTlÞ
MQM Dgðz=2Þ ¼ 17573þ 1506ðXGa � XTlÞ

Al–In MQM Dgðz=2Þ ¼ 23849þ 2510ðXAl � XInÞ
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FIGURE 2. Ga–Pb phase diagram calculated with different models and experimen-
tal data points (see Refs. [4–8]).
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FIGURE 3. Excess enthalpies in Ga–Hg liquid solutions calculated with different
models and experimental data points (see Ref. [3]).
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